APROXIMACIÓN IN SILICO A LA ESTRUCTURA 3D DE LA PROTEÍNA ANTIVENENO DM64 DE LA ZARIGÜEYA (MAMMALIA: MARSUPIALIA: DIDELPHIDAE)
PDF

Cómo citar

Duque-Osorio, J.-F. ., Sánchez, A. ., Fierro, L. ., & Castaño, R. S. . (2023). APROXIMACIÓN IN SILICO A LA ESTRUCTURA 3D DE LA PROTEÍNA ANTIVENENO DM64 DE LA ZARIGÜEYA (MAMMALIA: MARSUPIALIA: DIDELPHIDAE). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 33(126), 103–123. https://doi.org/10.18257/raccefyn.33(126).2009.1815

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Los accidentes por mordeduras de serpientes venenosas producen más de 50 mil muertes al año, particularmente en los trópicos donde se han convertido en un problema de salud pública. Estos accidentes producen, entre otros síntomas, hemorragias (SVMPs), mionecrosis (PLAs) y dolor, y las seroterapias convencionales son solo parcialmente efectivas y pueden producir efectos inmunes adversos. Por todo esto, recientemente se están investigando proteínas antiveneno naturales de mamíferos [DM43 (antihemorragina) y DM64 (antimiotóxica) de la zarigüeya] que han demostrado ser más efectivas. Adicionalmente las SVMPs y PLAs venosas tienen sus contrapartes endógenas normales no venenosas (MMPs y PLAs), y cuando el balance entre estas últimas y sus inhibidores se rompe, se producen patologías como: artritis, arterioesclerosis, asma, diabetes, choques sépticos, neoplasias, inflamaciones, psoriasis, reumatismo, etc. Por todo esto se hizo una aproximación in silico y por homología a la estructura 3D de DM64, con el sistema Swiss Model-Deep View. Además de obtener un modelo similar al previamente logrado por otro grupo para DM43, este proceso permitió estandarizar esta técnica de modelamiento de proteínas como una herramienta muy útil en nuestro medio por su eficiencia y bajo costo (SM-DV se puede utilizar gratuitamente).

https://doi.org/10.18257/raccefyn.33(126).2009.1815

Palabras clave

Didelphis | modelo por homología estructural | proteínas antiveneno de mamíferos (PLIs | anti-SVMP | DM64, DM43) | Swiss Model-Deep View | veneno de serpientes (PLAs | SVMPs) | Viperidae
PDF

Citas

Alberts B., Johnson A. Lewis J., Raff M., Roberts K. & P. Walter.2002. The Molecular Biology of the Cell. Garland Science, New York, USA.

Bazan J.F. 1990. Structural Design and Molecular Evolution of a Cytokine Receptor Superfamily. PNAS 87: 6934-6938.

Biardi J.E., Coss R.G. & D.G. Smith. 2000. California Ground Squirrel (Spermophilus beecheyi) Blood Sera Inhibits Crotalid Venom Proteolytic Activity. Toxicon 38(5): 713-721.

Bjarnason, J.B. & J.W. Fox. 1994. Hemorrhagic Metalloproteinases from Snake Venoms. Pharmac. Ther. 62(3): 325–372.

Bottino C., Vitale M., Pende D., Biassoni R. & A. Moretta. 1995. Receptors for HLA Class I Molecules in Human NK Cells. Seminars in Immunology 7: pp 67-73.

Catanese J.J. & L.F. Kress. 1992. Isolation from Opossum Serum of a Metalloproteinase Inhibitor Homologous to Human 1Bglycoprotein. Biochemistry 31: 410-418.

Chippaux J.P. & Goyfon M. 1998. Venoms, Antivenoms and Immunotherapy. Toxicon 36(6):823-846.

Contreras-Moreira B., Fitzjohn P.W. & P.A. Bates. 2002. Comparative Modelling: An Essential Methodology for Protein Structure Prediction in the Post-Genomic Era. Applied Bioinformatics 1(4): 177-190.

Contreras-Moreira B. & P.A. Bates. 2002. Domain Fishing: A First Step in Protein Comparative Modelling. Bioinformatics 18(8): 1141-1142.

Cooper G.M. 2000. The Cell: A Molecular Approach. Second Edition, Sinauer Associates, Inc., Sunderland, Missachusetts, USA. de Vos A.M., Ultsch M. & A.A. Kosslakoff. 1992. Human Growth Hormone and Extracellular Domain of its Receptor: Crystal Structure of the Complex. Science 255: 306-312

Domont G.B., Perales J. & H. Moussatche. 1991. Natural Anti- Snake Venom Proteins. Toxicon 29(10):1183-94.

Duque-Osorio J.F., Sánchez A., Fierro L., Garzón S. & R.S. Castaño. 2007. Venenos de Serpientes y Moléculas Antiveneno. Revista de la Academia Colombiana de Ciencias Físicas Exactas y Naturales (ACCEFYN) 31(118): 109-137.

Gold B.S., Dart R.C. & R.A. Barish. 2002. Bites of Venomous Snakes. N. Engl. J. Med. 347: 347 - 356.

Guex N. & M.C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling.Electrophoresis 18 (15): 2714-2723.

Guex N. & M.C. Peitsch. 2009. Principles of Protein Structure, Comparative Protein Modelling and Visualisation. [publicación en línea]. Disponible desde Internet en: <http://swissmodel.expasy.org/course/course-index.htm> [con acceso el 06-May-2009].

Guex N., Diemand A. and M.C. Peitsch. 1999. Protein Modelling for All. Elsevier TIBS 24: 364-367.

Guex N., Diemand A., M.C. Peitsch & T. Schwede. 2008. The Swiss Institute of Bioinformatics Presents Deep View (Swiss PDB Viewer). [publicación en línea]. Disponible desde Internet en: <http://swissmodel.expasy.org/spdbv/> [con acceso el 06-May-2009].

Gunsteren W.F., Billeter S.R., Eising A.A., Hünenberger P.H., Krüger P., Mark A.E., Scott A.M. & I.G. Tironi. 2009.Biomolecular Simulation: The Gromos Manual. [publicación en línea]. Disponible desde Internet en: <http://www.igc.ethz.ch/GROMOS/manual> [con acceso el 06-May-2009].

Gutiérrez J.M. & A. Rucavado. 2000. Snake Venom Metalloproteinases: Their Role in the Pathogenesis of Local Tissue Damage. Biochimie 82(9-10): 841-50.

Gutiérrez J.M. & C.L. Ownby. 2003. Skeletal Muscle Degeneration Induced by Venom Phospholipases A2: Insights Into the Mechanisms of Local and Systemic Myotoxicity. Toxicon42(8): 915-931.

Hains P.G. & K.W. Broady. 2000. Purification and Inhibitory Profile of Phospholipase A2 Inhibitors from Australian Elapid Sera. Biochem J 346: 139-146.

Hains P.G., Sung K.L., Tseng A. & K.W. Broady. 2000. Functional Characteristics of a Phospholipase A2 Inhibitor from Notechis ater Serum. J Biol Chem 275: 983-991.

Hains P.G., Nield B., Skuloski S., Dunn R. & K. Broady. 2001.Sequencing and Two-dimensional Structure Prediction of a Phospholipase A2 Inhibitor from the Serum of the Common Tiger Snake (Notechis scutatus). J Mol Biol 312: 875-884.

Halaby D.M. & J.P.E. Mornon. 1998. The ImmunoglobulinSuperfamily: An Insight on Its Tissular, Species, and Functional Diversity. J Mol Evol 46: 389-400.

Halaby D.M., Poupon A. & J.P. Mornon. 1999. The Immunoglobulin Fold Family: Sequence Analysis and 3D Structure Comparisons. Protein Engineering 12(7): 563 - 571. Harpaz Y. & C. Chothia. 1994. Many of the Immunoglobulin Superfamily Domains in Cell Adhesion Molecules and Surface Receptors Belong to a New Structural Set Which is Close to that Containing Variable Domains. J Mol Biol 238: 528-539.

Hood L., Kronenberg M. & T. Hunkapiller. 1985. T Cell Antigen Receptors and the Immunoglobulin Supergene Family. Cell 40: 225-229.

Ishioka N., Takahashi N. & F.W. Putnam. 1986. Amino Acid Sequence of Human Plasma -1B-glycoprotein: Homology to the Immunoglobulin Supergene Family. PNAS 83: 2363-2367.

Jia L.G., Shimokawa K., Bjarnason J.B. & J.W. Fox. 1996. Snake Venom Metalloproteinases: Structure, Function and Relationship to the ADAMs Family of Proteins. Toxicon 34(11-12): 1269-1276.

Jurgilas P.B., Neves-Ferreira A.G.C., Domont G.B. & J. Perales. 2003. PO41, a Snake Venom Metalloproteinase Inhibitor Isolated From Philander Opossum Serum. Toxicon 42: 621-628.

Kamiguti A.S., Hay C.R., Theakston R.D. & M. Zuzel. 1996. Insights into the Mechanism of Haemorrhage Caused by Snake Venom Metalloproteinases. Toxicon 34(6): 627-642.

Kamiguti A.S., Zuzel M. & R.D. Theakston. 1998. Snake Venom Metalloproteinases and Disintegrins: Interactions With Cells. Braz J Med Biol Res 31(7): 853-62.

Kaplan W. & T.G. Littlejohn. 2001. Swiss-PDB viewer (Deep View). Briefings in Bioinformatics 2(2): 195-197.

Kopp J. & T. Schwede. 2004. The SWISS-MODEL Repository of Annotated Three-Dimensional Protein Structure Homology Models. Nucleic Acids Research 32: D230-D234.

Kumar S., Tamura K. & M. Nei. 2004. MEGA 3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment Briefings in Bioinformatics 5:150-163.

Lehtinen M.J., Meri S. and T.S. Jokiranta. 2004. Interdomain Contact Regions and Angles Between Adjacent Short Consensus Repeat Domains. J. Mol. Biol. 344(5): 1385-1396.

Letunic I., Copley R.R., Schmidt S., Ciccarelli F.D., Doerks T., Schultz J., Ponting C.P. & P. Bork. 2004. SMART 4.0: Towards Genomic Data Integration. Nucleic Acids Research 32: D142-D144.

Lizano S., Domont G. & J. Perales. 2003. Natural Phospholipase A2 Myotoxin Inhibitor Proteins from Snakes, Mammals and Plants.Toxicon 42: 963-977.

Lomonte B., Ángulo Y. & L. Calderón. 2003. An Overview of Lysine-Phospholipase A2 Myotoxins from Crotalid Snake Venoms and their Structural Determinants of Myotoxic Action. Toxicon 42(8): 885–901.

Martínez R.R., Pérez J.C., Sánchez E.E. & R. Campos. 1999. The Antihemorrhagic Factor of the Mexican Ground Squirrel,(Spermophilus mexicanus). Toxicon 37: 949-954.

Matsui T., Fujimura Y. & K. Titani. 2000. Snake Venom Proteases Affecting Hemostasis and Thrombosis. Biochim Biophys Acta 1477(1-2): 146-156.

Mattison C. 1995. The Encyclopedia of Snakes. Facts on Life, Inc. New York. 256 pp.

Melo P.A. & G. Suarez-Kurtz. 1988. Release of Sarcoplasmic Enzymes from Skeletal Muscle by Bothrops jaracussu venom: Antagonism by Heparin and by the Serum of South American Marsupials. Toxicon 26:87-95.

Moretta A., Bottino C., Vitale M., Pende D., Biassoni R., Mingari M.C. & L. Moretta. 1996. Receptors for HLA Class-I Molecules in Human Natural Killer Cells. Annu Rev Immunol 14:619-648.

Nei M., Gu X. & T. Sitnikova. 1997. Evolution by the Birth-and-Death Process in Multigene Families of the Vertebrate Immune System. PNAS 94: 7799–7806.

Neves-Ferreira A.G.C., Perales J., Ovadia M., Moussatché H. & G.B. Domont. 1997. Inhibitory Properties of the Antibothropic Complex from the South American Opossum (Didelphis marsupialis) Serum. Toxicon 35(6): 849-863.

Neves-Ferreira A.G.C., Cardinale N.; Rocha S.L.G., Perales J. & G.B. Domont. 2000. Isolation and Characterization of DM40 and DM43, Two Snake Venom Metalloproteinase Inhibitors from Didelphis marsupialis Serum. Biochim Biophys Acta 1474: 309-320.

Neves-Ferreira A.G.C., Perales J., Fox J.W., Shannon J.D., Makino D.L., Garratt R.C. & G.B. Domont. 2002. Structural and Functional Analyses of DM43, a Snake Venom Metalloproteinase Inhibitor from Didelphis marsupialis Serum. J Biol Chem 277: 13129-13137.

Núñez C.C., Ángulo Y. & B. Lomonte. 2001. Identification of the Myotoxic site of the Lys49 Phospholipase A2 from Agkistrodon piscivorus piscivorus Snake Venom: Synthetic C-terminal Peptides from Lys49, but not from Asp49 Myotoxins, Exert Membrane-damaging Activities. Toxicon 39(10): 1587-1594.

Ohno M., Chijiwa T., Oda-Ueda N., Ogawa T. & S. Hattori. 2003. Molecular Evolution of Myotoxic Phospholipases A2 from Snake Venom. Toxicon 42(8): 841-854.

Omori-Satoh T., Yamakawa Y. & D. Mebs. 2000. The Antihemorrhagic Factor, Erinacin, from the European Hedgehog (Erinaceus europaeus), a Metalloprotease Inhibitor of Large Molecular Size Possessing Ficolin/Opsonin P35 Lectin Domains. Toxicon 38(11): 1561-1580.

Ownby C.L., Colberg T.R. & H.S. Selistre-de-Araujo. 1998. Phospholipase A2 Toxins: Diversity in Structure and Function. 12th World Congress on Animal, Plant and Microbial Toxins. Toxicon 36(9):1219-1232.

Peitsch M.C. 2002. About the Use of Protein Models. Bioinformatics 18 (7): 934-938.

Perales J., Moussatche H., Oliveira B., Marangoni S. & G.B. Domont. 1994. Isolation and Partial Characterization of an Antibothropic Complex From Serum of South American Didelphidae. Toxicon 32: 1237-1249.

Perales J. & G.B. Domont. 2002. Are Inhibitors of Metalloproteinases, Phospholipases A2 and Myotoxins Members of the Innate Immune System?. Pp: 435-455 En: Menéz A. (ed.). Perspectives in Molecular Toxinology. John Wiley & Sons. 485 pp.

Pérez J.C. & E.E. Sanchez. 1999. Natural Protease Inhibitors to Hemorrhagins in Snake Venoms and Their Potential use in Medicine. Toxicon 37(5): 703-28.

Pruess M. & R. Apweiler. 2003. Bioinformatics Resources for In Silico Proteome Analysis. Journal of Biomedicine and Biotechnology 4 (2003): 231-236. Qi Z.Q., Yonaha K., Tomihara Y. & S. Toyama. 1994. Characterization of the Antihemorrhagic Factors of Mongoose (Herpestes edwardsii). Toxicon 32(11): 1459-1469.

Rhodes G. 2000. Judging the Quality of Macromolecular Models: A Glossary of Terms from Crystallography, NMR, and Homology Modeling. [publicación en línea]. Disponible desde Internet en: <http://spdbv.vital-it.ch/TheMolecularLevel/ModQual/>[con acceso el 06-May-2009]

Rhodes G. 2008. Molecular Modeling for Beginners: Tutorial For Deep View (Swiss-PdbViewer). Disponible desde Internet en:<http://spdbv.vital-it.ch/TheMolecularLevel/SPVTut/> [con acceso el 06-May-2009]

Rocha S.L.G., Lomonte B., Neves-Ferreira A.G.C., Trugilho M.R.O., Junqueira-de-Azevedo I.L.M., Ho P.L., Domont G.B., Gutiérrez J.M. & J. Perales. 2002. Functional Analysis of DM64, an Antimyotoxic Protein with immunoglobulin-like Structure from Didelphis marsupialis serum. Eur J Biochem 269: 6052-6062.

Rueda-Borrego M. 2005. Estudio Teórico Sobre la Influencia del Solvente en la Estructura y Dinámica del ADN. Universidad de Barcelona, Departamento de Bioquímica y Biología Molecular.

[publicación en línea]. Disponible desde Internet en: <http://www.tesisenxarxa.net/TESIS_UB/AVAILABLE/TDX-0629106-135551//MRB_TESIS.pdf> [con acceso el 06-May-2009].

Sali A. 2009. Modeller: A Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. [publicación en línea]. Disponible desde Internet en: <http://salilab.org/modeller/> [con acceso el 06-May-2009].

Scott W.R.P., Hünenberger P.H., Tironi I.G., Mark A.E., Billeter S.R., Fennen J., Torda A.E., Huber T., Krüger P. & W.F. vanGunsteren. 1999. The GROMOS Biomolecular Simulation Program Package. J Phys Chem A 103(19):3596–3607.

Schultz J., Milpetz, F., Bork, P. & C.P. Ponting. 1998. SMART, a Simple Modular Architecture Research Tool: Identification of Signalling Domains. PNAS 95(11): 5857-5864.

Schwede T., Diemand A., Guex N. & M.C. Peitsch. 2000. Protein Structure Computing in the Genomic Era. Res Microbiol 151: 107-112.

Schwede T., Kopp J., Guex N. & Peitsch M.C. 2003. SWISS-MODEL: An Automated Protein Homology-Modeling Server. Nucleic Acids Research 31 (13): 3381-3385.

Soares A.M., Rodrigues V.M., Borges M.H., Andriao-Escarso S.H., Cunha O.A., Homsi-Brandeburgo M.I. & J.R. Giglio. 1997. Inhibition of Proteases, Myotoxins and Phospholipases A2 from Bothrops Venoms by the Heteromeric Protein Complex of Didelphis Albiventris Opossum Serum. Biochem Mol Biol Int 43(5): 1091-1099.

Soares A.M., Marcussi S., Stábeli R.G., França S.C., Giglio J.R., Ward R.J. & E.C. Arantes. 2003. Structural and Functional Análisis of BmjMIP, a Phospholipase A2 Myotoxin Inhibitor Protein from Bothrops moojeni plasma. Biochem Biophys Res Comm 302:193-200.

Somers W., Ultsch M., De Vos A.M. & A.A. Kossiakoff. 1994. The X-Ray Structure of A Growth Hormone-Prolactin Receptor Complex. Nature 372(6505): 478-81.

Thwin M.M. & P. Gopalakrishnakone. 1998. Snake Envenomation and Protective Natural Endogenous Proteins: A Mini Review of Recent Developments. Toxicon 36(11): 1471-1482.

Thwin M.M., Gopalakrishnakone P., Kini R.M., Armugam A. & K. Jeyaseelan. 2000. Recombinant Antitoxic and Anti-inflamatory Factor from the Nonvenomous Snake Python reticulatus: Phospholipase A2 Inhibition and Venom Neutralizing Potential.Biochemistry 39: 9604-9611.

Weissenberg S., Ovadia M., Fleminger G. & E. Kochva. 1991. Antihemorrhagic Factors from the Blood Serum of the Western Diamondback Rattlesnake Crotalus atrox. Toxicon Volume 29(7): 807-818.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.