Química del agua de lluvia de una metrópoli urbanoindustrial en desarrollo en el sureste de Nigeria
PDF (English)

Cómo citar

Ekwere, A. S. . (2023). Química del agua de lluvia de una metrópoli urbanoindustrial en desarrollo en el sureste de Nigeria. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(183), 371–384. https://doi.org/10.18257/raccefyn.1796

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Se analizó el agua de lluvia en la metrópoli de Calabar para establecer sus características químicas y sus influencias e idoneidad para la agricultura. El muestreo se realizó durante los ciclos estacionales secos y de lluvias a lo largo de tres años (2018-2021). Se hicieron mediciones del pH, la conductividad eléctrica y los iones mayoritarios: Ca2+, Na+, Mg2+, K+, HCO3-, Cl- y SO42-. Se hizo un análisis de componentes principales y de proporciones iónicas para establecer las relaciones entre las especies iónicas y proyectar sus fuentes. La idoneidad del agua de lluvia para uso agrícola también se determinó mediante el cálculo de la proporción de absorción del sodio y el magnesio. Los resultados indicaron una tendencia de abundancia relativa de cationes de Ca > Mg > K > Na, en tanto que HCO3 > SO4 > Cl fue la tendencia de los aniones. El pH varió de 6,1 a 7,8 (con una media de 6,60), lo que conjuntamente con la conductividad eléctrica refleja las influencias de los gases atmosféricos y los sólidos disueltos en las nubes. La media ponderada por volumen de las especies iónicas fue de 246 eq/l para la estación húmeda y de 198 eq/l para la estación seca, lo que indica una contaminación atmosférica de baja a moderada. Los flujos de deposición húmeda para los contenidos iónicos totales en el agua de lluvia fueron más altos en la estación húmeda, lo que indica el impacto de la lluvia. El análisis de componentes principales y las proporciones iónicas evidenciaron que las concentraciones iónicas eran predominantemente de origen marino y de la corteza. Las características químicas del agua de lluvia en el área de estudio comparadas con los intervalos de las concentraciones de otras ubicaciones con entornos geológicos similares e índices de contaminación de bajos a moderados fueron muy similares. La evaluación del agua de lluvia para uso agrícola basada en las proporciones de absorción de sodio y magnesio evidenció buenos niveles de idoneidad.

https://doi.org/10.18257/raccefyn.1796

Palabras clave

Agua de lluvia | Composición química | Proporciones iónicas | Agricultura | Calabar | Nigeria
PDF (English)

Citas

Abeng, F. E., Idim, V. D. (2019). Physicochemical properties of rainwater quality of Calabar Municipality, S.E. Nigeria. International Journal of Chemistry Studies, 4 (3), 1-5.

Adegunwa, A., Adebiyi, F. M., Asubiojo, O. (2019). Evaluating aerial pollution using rainwater chemistry for sustainable environmental development. Management of Environmental Quality, 31(3), 713-739. https://doi.org/10.1108/meq-07-2019-0146

Ademorati, C.M.A. (1996). Environmental Chemistry and Toxicology. Ibadan, Nigeria: Foludex press. Akpo, A.B., Galy-Lacaux, C., Laouali, D., Delon, C., Liousse, C., Adon, M., Gardrat, E., Mariscal, A., Darakpa, C. (2015). Precipitation chemistry and wet deposition in a remote wet savanna site in West Africs: Djougou, Benin. Atmospheric Environment, 115, 110-123. https://doi.org/10.1016/j.atmosenv.2015.04.064

Arimoto, R., Zhang, X. Y., Huebert, B.J., Kang, C.H., Savoie, D. L., Prospero, J.M., Sage, S. K., Schloesslin, C. A., Khaing, H. M., Oh, S.N. (2014). Chemical composition of atmospheric aerosols from Zhenbeitai, China and Gosan, South Korea, during ACE-Asia. Journal Geophysics Research, 109, D19S04.

Baez, A. P., Belmont, R. D., García, R.M., Torres, M.C., Padilla, H.G. (2007). Rainwater chemical composition at two sites in Central Mexico. Atmospheric Research, 80, 67-85.

Baride, M., Sanjaykumar, N.P., Rushikesh, G. (2014). Groundwater geochemistry of shallow and deep aquifers fro Jalgaon district, northern Maharashtra (India). International Journal of Advances Geosciences, 2(2), 97-104.

Berner, E. K., Berner, R. A. (1996). Global environment: water, air and geochemical cycles. Upper Saddle River, NJ. Prentice Hall, Inc. Casartelli, M.R., Mirlean, N., Peralba, M.C., Barrionuevo, S., Gómezrey, M.X., Madeira, M. (2008). An assessment of the chemical composition of precipitation and throughfall in ruralindustrial gradient in wet subtropics (southern Brazil). Environmental Monitoring Assess, 144, 105-116.

Chughtai, M., Mustafa, S., Mumtaz, M. (2014) Study of Physicochemical parameters of Rainwater: A case study of Karachi, Pakistan. American Journal of Analytical Chemistry,5(2014), 235-242.

Ekwere, A.S., Edet, B.B. (2023). Hydrochemistry of groundwaters within the rock quarrying districts of western Oban Massif, southeastern Nigeria. Indian Journal Environmental Protection, 43(2), 108-118.

Ekwere, A.S., Edet, B.B. (2021). Temporal variations of heavy metals in sediments, soils, and dust particulates across the rock quarrying districts of the Oban Massif, southeastern Nigeria. Environment Nanotechnology, Monitoring and Management, 15 (100431).

Ekwere, A.S., Kudamnya, E A., Osung, W.E. (2021). Assessment of potentially toxic metals and their mineral species in soils of arable farmlands in the southeastern Niger delta basin, Nigeria Soil Environment, 40(2), 119-126.

Ekwere, A.S., Elueze, A.A. (2012). Trace element assessment of stream sediments around the Aluminium Smelting Company in Ikot Abasi, south-eastern Nigeria. Research Journal of Applied Sciences, Engineering & Technology, 4(4), 256-261.

Ekwere, A.S., Edet, A. E. (2015). Vulnerability assessment of aquifers within the Oban Massif, south-eastern Nigeria, using DRASTIC method. International Journal of Scientific and Engineering Research, 6 (10), 1123-1136.

Ekwere, A.S., Edet, A.E., Ekwere, S.J. (2012). Groundwater chemistry of the Oban Massif, SouthEastern Nigeria. Ambiente-Agua, Taubaté, 7(1), 51-66.

Gioda, A., Mayol-Bracero, O.L., Scatena, F.N., Weathers, K.C., Mateus, V.L., McDowell, W.H. (2013). Chemical constituents in clouds and rainwater in Puerto Rican rainforest: potential sources and seasonal drivers. Atmospheric Environment, 68, 208-220. https://doi. org/10.1016/j.atmosenv.2012.11.017

Gonçalves, F.L.T., Massambani, O., Beheng, K.D., Vautz, W., Schilling,M., Solci, M. C. (2000). Modelling and measurements of below cloud scavenging processes in the highly industrialized region of Cubatão-Brazil. Atmospheric Environment, 34 (24), 4113-4120. https://doi.org/10.1016/S1352-2310(99)00503-8

Herrera, J., Rodríguez, S., Baez, A.P. (2009). Chemical composition of bulk precipitation in the metropolitan area of Costa Rica, Central America. Atmospheric Research, 94, 151-160.

Honório, B.A.D., Horbe, A.M.C., Seyler, P. (2010). Chemical composition of rainwater in western Amazonia – Brazil. Atmospheric Research, 98, 416-425.

Huang, X. F., Li, X., He, L. Y., Feng, N., Hu, M., Niu, Y. W., Zeng, L. W. (2010). 5-year study of rainwater chemistry in a coastal mega-city in South China. Atmospheric Research, 97, 185-193.

Huang, H., Wang, Z., Guo, J., Wang, C., Zhang, X. (2022). Composition, seasonal variation and sources attribution of volatile organic compounds in urban air in southwestern China. Urban Climate, 45(101241).

Kaskaoutis, D. G., Kumar, S., Sharma, D., Singh, R. P., Kharol, S. K., Sharma, M., Singh, A. K., Singh, S., Singh, A., Singh, D. (2014). Effects of crop residue burning on aerosol properties, plume characteristics and long-range transport over Northern India. Journal Geophysics Research 119, 3019-3026.

Keresztesi, Á., Birsan, M-V., Nita, I-A., Bodor, Z., Szep, R. (2019). Assessing the neutralisation, wet deposition and source contributions of the precipitation chemistry over Europe during 2000-2017. Environment Science European, 31 (50). https://doi. org/10.1186/s12302-019-

-9.

Keresztesi, Á., Nita, I-A., Boga, R., Birsan, M-V., Bodor, Z., Szép, R. (2020). Spatial and longterm analysis of rainwater chemistry over the conterminous United States. Environmental Research,188, 109872.

Langmuir, D. (1997). Aqueous Environmental Geochemistry. Prentice Hall, Inc. Upper Saddle River, New Jersey 07458.

Le Bolloch, O., Guerzoni, S. (1995). Acid and alkaline deposition in precipitation on the western coast of Sardinia, central Mediterranean (40˚ N 8˚ E). Water Air and Soil Pollution, 85, 2155-2160.

Li, J., Wu, H., Jiang, P., Fu, C. (2022). Rainwater chemistry in a subtropical high-altitude mountain site, South China: Seasonality, source apportionment and potential factors. Atmospheric Environment, 268,118786.

Ma, X., Xia, D., Chen, P. (2023). Heavy metal distribution, magnetic properties, source apportionment and potential risks in urban street dust of northwest China. Water Air and Soil Pollution, 234(2), 133. https://doi.org/10.1007/s11270-023-06132-y

Majumdar, D., Adhikaryb, H. (2022). Identification of sources of ions in early monsoon precipitation over Kolkata Metropolis and two adjoining towns. Urban Climate, 41,101087.

Masiwal, R., Sharma, C., Shukla, D.K., Radhakrishnan, S.R., Pandey, K., Uniyal, S.K., Ranjan, A. (2022). Influence of precursors and meteorology on ambient ozone over Indian western Himalayas. Urban Climate, 45, 101239.

Mazurkiewicz, K., Jeż-Walkowiak, J., Michałkiewicz, M. (2022). Physicochemical and microbiological quality of rainwater harvested in underground retention tanks. Science of the Total Environment, 814 (152701)

Mimura, A.M.S., Almedia, J.M., Vaz, F.A.S., de Oliviera, M.A.L., Ferreira, C.C.M., Silva, J.C.J. (2016). Chemical composition monitoring of tropical rainwater during a typical dry year. Atmospheric Research, 169, 391-399.

Mizra, A.T.M., Tanvir, R., Saadat, A.H.M., Md., Safiqul, I, Md. Abdullah, A., Shamim, A. (2017). Groundwater characterisation and selection of suitable water type for irrigation in western region of Bangladesh. Applied Water Science, 7, 233-243.

Moreda-Piñeiro, J.M., Alonso-Rodríguez, E.L., Moscoso-Péréz, C. M., Blanco-Heras, G. B., Turnes-Carou, I. T., López-Mahía, P.L., Muniátegui-Lorenzo, S. M., Prada-Rodríguez, D. P. (2014). Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (Northwest Coast of Spain). Atmospheric Environment, 88, 30-38.

Mouli, P.C., Mohan, S.V., Reddy, S.J. (2005). Rainwater chemistry at a regional representative urban site: influence of terrestrial sources on ionic composition. Atmospheric Environment, 39, 999-1008.

Niu, H., He, Y., Lu, X.X., Shen, J., Du, J., Zhang, T., Pu, T., Xin, H., Chang, L. (2014). Chemical composition of rainwater in the Yulong snow mountain region, south-western China. Atmospheric Research, 144, 195-206.

Okoya, A.A., Osungbemiro, W.B., Ologunorisa, T. (2017). Spatial variation of rainwater in Ile-Ife, Osun State, Nigeria. Journal of Sustainable Development, 10(2), 203-217.

Oliviera, P.I., Figueiredo, B.R., Cardoso, A.A. (2012). Rainwater major and trace element contents in southeastern Brazil: an assessment of a sugar cane region in dry and wet period. Journal Brazilian Chemical Society, 23 (12), 2258-2265.

Raimundo C. O., Michael, M. K., José F. R., Troy P. B., Patrick M. C., Plinio, B.C., Joost H. (2015). Chemical analysis of rainfall and throughfall in the Tapajos National Forest, Belterra, Para, Brazil. Revista Ambiente Água,10(2), 263-285. https://doi.org/10.4136/ambi-agua.1552

Rao, P.S.P., Tiwari, S., Matwale, J.L., Pervez, S., Tunved, P., Safai, P.D., Srivastava, A.K., Bisht, D.S., Singh, S., Hopke, P.K. (2016). Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmospheric Environment, 146, 90-99.

Rauf, A. U., Mallongi, Daud, A., Hatta, M., Amiruddin, R., Stang, S., Wayuh, A., Astuti, R.D.P. (2022). Spatial Distribution and Ecological Risk of Potentially Toxic Elements in Maros Regency, Indonesia. Carpathian Journal of Earth and Environmental Sciences 17(1), 93 -100. https://doi.org/10.26471/cjees/2022/017/203

Reijers, T.J.A. (1996). Selected Chapters on Geology, Sedimentary Geology and Sequence Stratigraphy and three case studies and field guide, SPDC Publications, Warri, Nigeria, 197p.

Rocha, F.R., Silva, J.A.F., Lago, C.L., Fornaro, A., Gutz, I.G.R. (2003). Wet deposition and related atmospheric chemistry in the Sao Paulo metropolis, Brazil, Part 1: major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection. Atmosphere, 37, 105-115.

Safai, P.D., Rao, P.S.P., Momin, G.A., Ali, K., Chate, D.M., Praveen, P.S. (2004). Chemical precipitation during 1984-2002 at Pune, India. Atmospheric Environment, 38, 1705-1714.

Short, K. C., Stauble, A. J. (1967). Outline of geology of Niger Delta. AAPG Bulletin 52, 761-779.

Staelens, J., Schrijver, A.D., Avermaet, P.V., Genouw, G., Verhoest, N. (2005). A comparison of bulk and wet only deposition at two adjacent sites in Melle. Atmospheric Environment, 39, 7-15.

Tiwari, S., Hopke, P.K., Pipal, A.S., Srivastava, A.K., Bisht, D.S., Tiwari, S., Singh, A.K., Soni, V.K., Attri, S.D. (2015). Intra-urban variability of particulate matter (PM25 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmospheric Research, 166, 223-232.

WHO. (2008). Guideline for Drinking-water Quality (3rd ed. Incorporating 1st and 2nd Agenda), Vol. 1. Recommendations, Geneva, 668p. Xu, Z., Yao, W., Wien-Jing, L., Chong-Shan, L., Jianpeng, J., Tong, Z., Xuang, Z. (2015).

Chemical composition of rainwater and acid neutralization effect at Beijing and Chizhou city, China. Atmospheric Research, 164-165, 278-285.

Zunckel, M., Saizar, C., Zaruaz, J. (2003). Rainwater composition in northeast Uruguay. Atmospheric Environment, 37, 1601-1611.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales