Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico (NTC-AF)
PDF

Cómo citar

Martínez O., F. (2014). Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico (NTC-AF). RACCEFYN, 38, 152–166. https://doi.org/10.18257/raccefyn.161

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas

Resumen

Se describe métodos para la funcionalización covalente y no covalente de nanotubos de carbono de pared simple (NTC) con ácido fólico, así como su caracterización espectroscópica. La irradiación de soluciones acuosas de NTC-AF con IR genera un efecto de calentamiento dependiente de la concentración, de la potencia del haz y del tipo de interacción ácido fólico- TC; los experimentos de control indican que el aumento de la temperatura se debe solo al NTC. Los estudios biológicos preliminares indican una internalización del bioconjugado en células THP-1 y en las infectadas con parásitos de Leishmania, observándose que el efecto térmico generado por la iluminación con IR puede disminuir la población de las células infectadas. © 2014. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.
https://doi.org/10.18257/raccefyn.161
PDF

Referencias

Ahmad A., Kurkina T., Kern K. and Balasubramanian K., 2009. Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. Chem. Phys. Chem. 10:2251–2255.

Atthal S., Thiruvengadathan R., Regev O., 2006. Determination of the concentration of single walled carbón nanotubes in aqueous dispersión using UV-Vis absorption spectroscopy. Anal. Chem. 78 (23):8098-8104.

Ayala B, E., Peña B.Y. G., 2013. Funcionalización covalente de nanotubos de carbono de pared simple con ácido fólico y evaluación de su efecto térmico, Trabajo de grado, Director Fernando Martínez O., Escuela de Química, Facultad de Ciencias, UIS.

Ayala B. E., Peña Y. G., Barbosa O., Torres R., Martínez O. F.,2013. Evaluación del efecto térmico de nanotubos de carbono de pared simple funcionalizados con ácido fólico. Rev. Invest. Univ. Quindío. 1 (24): 107-111.

Bandara N. A., Hansen M. J., and Low P. S., 2014. Effect of Receptor Occupancy on Folate Receptor Internalization. Molecular. Pharmaceutics 11 (3): 1007−1013.

Boca-Farcau S., Potara M., Simon T., Juhem A., Baldeck P., and Astilean S.,2014. Folic Acid-Conjugated, SERS-Labeled Silver Nanotriangles for Multimodal Detection and Targeted Photothermal Treatment on Human Ovarian Cancer Cells. Molecular. Pharmaceutics 11 (2): 391–399.

Burkea A., Ding X., Singh R., Kraft R. A., Levi-Polyachenko N., Rylander M. N., Szot C., Buchanan C., Whitney J., Fisher J., Hatcher H. C., D’Agostino R., Jr., Kock N. D., Ajayan P. M., Carroll D. L., Akman S., Torti F. M., and Torti S. V., 2009. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. PNAS 106 (31): 12897–12902.

Burlaka A., Lukin S., Prylutska S., Remeniak O., Prylutskyy Y., Shuba M., Maksimenko S., Ritter U., Scharff P., 2010. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 32 (1): 48-50.

Castillo J. J., Torres M. H., Molina D. R., Castillo-León J., Svendsen W. E., Escobar P., Martínez O. F., 2012. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered NMR spectroscopy. Carbon 50 (8): 2691–2697.

Castillo J.J., Novoa L.V., Martínez F., Escobar P., 2011. Carbon nanotubes-chitosan in HOS and THP-1 cells. Rev. Univ. Ind. Santander. Salud43 (1): 21–6.

Castillo, J. J., Rindzevicius T., Novoa L. V., Svendsen W. E., Rozlosnik N., Boisen A., Escobar P., Martínez F. and Castillo-Léon J., 2013. Non-covalent conjugates of single-walled carbón nanotubes and folic acid for interaction with cells over-expressing folate receptors. J. Mater. Chem. B. 1: 1475-1481.

Castillo J. J., Rozo C. E., Castillo-León J., Rindzevicius T., Svendsen W. E., Rozlosnik N., Boisen A., Martínez O. F., 2013. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chemical Physics Letters 564: 60–64.

Castillo, John, 2013. Diseño y Preparación de Nanocompuestos Funcionalizados con Ácido Fólico y sus Aplicaciones Biomédicas, tesis doctoral en química, escuela de Química, dirigida por Patricia Escobar R. y Fernando Martínez O., UIS, enero.

Chakravarty P., Marches R., Zimmerman N. S., Swafford A. D.-E., Bajaj P., I. H. Musselman, P. Pantano, Draper R. K., and Vitetta E. S., 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. PNAS 105 (25): 8697– 8702.

Cohen Y., Avram L., and Frish L., 2005. Diffusion NMR Spec-troscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter.

Cho E. S., S. Hong W. and Jo W. H., 2008. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes.Macromol. Rapid Commun. 29 (22): 1798–1803.

Chen H., Chi X., Li B., Zhang M., Ma Y., Achilefu S. and Gu Y., 2014. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. |Biomater. Sci., 2: 996–1006.

Chou H.-T., Wang T.-P., Lee Y., Taia N.-H., Chang H.-Y., 2013. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering C 33 (2): 989–995.

Dresselhauss M., Dresselhaus G., Jorio A., Filho A., Pimenta A., Saito R., 2002. Single Nanotube Raman Spectroscopy. Acc. Chem. Res. 35 (12): 1070-1078.

Elhissi A. M. A., Ahmed W., Hassan I. U., Dhanak V. R., andD’Emanuele A., 2012. Carbon Nanotubes in Cancer Therapy and Drug Delivery. J. of Drug Delivery Volume 2012, Article ID 837327, doi:10.1155/2012/837327

Fisher J., Sarkar S., Buchanan C., 2010. Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation. Cancer Research, 70 (23): 9855-9864.

Galvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres R., 2012.Chemical amination of lipase B from Candida Antarcticais an efficient solution for the preparation of cross linked enzyme aggregates. Process Biochemestry 47 (12): 2373-2378.

Gannon C. J., Cherukuri P., Yakobson B. I., Cognet L., Kanzius J. S., Kittrell C., Weisman R. B., Pasquali M., Schmidt H. K., Smalley R. E., Curley S. A., 2007. Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field. CANCER, Volume 110 (12): 2654-2665.

Graham E. G., MacNeill C. M., Levi-Polyachenko N. H., 2013. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation. J. Nanopart. Res. 15: 1649-1662

Hashida Y., Tanaka H, Zhou S., Kawakami S. , Yamashita F., Murakami T., Umeyama T., Imahori H., Hashida M., 2014. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release 173: 59-66.

Hildebrandt B., Wust P, Ahlers O., Dieing A., Sreenivasa G, Kerner T,Felix R.,Riess H., 2002.The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43 (1): 33–56.

Huang X, El-Sayed IH, Qian W, El-Sayed M.A., 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (6): 2115–2120.

Hussain S., Dosser L., Payne S., Stacy B., Schrandt A., 2011. Fundamental Examination of Nanoparticle Heating Kinetics Upon Near Infrared (NIR) Irradiation. ACS Appl. Mater. Interfaces3: 3971–3980.

Jinno M., Ando Y., Bandow S., Fan J., Yudasaka M., Ijima S., 2006. Raman scattering study for heat-treated carbon nanotubes: The origin of ≈1855cm−1Raman band. Chemical Physics Letters 418 (1-3): 109-114.

Kang B, Yu D. C, Dai Y.D., Chang S.Q., Chen D., Ding Y.T., 2009. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘‘Bomb’’ agents. Small 5 (11): 1292–301.

Kim U., Furtado C., Liu X., Chen G., Eklund P. 2005. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am Chem Soc. 127 (44): 15437-15445.

Koh B., Park J. B., Hou X. M. and Cheng W., 2011. Comparative Dispersion Studies of Single-Walled Carbon Nanotubes in Aqueous Solution. J. Phys. Chem. B, 115 (11): 2627–2633.

Kosuge H., Sherlock S. P., Kitagawa T., Dash R., Robinson J. T., Dai H.; McConnell M. V., 2012. Near Infrared Imaging and Photothermal Ablation of Vascular Inflammation Using Single-Walled Carbon Nanotubes. J. Am. Heart Assoc. 2012: doi: 10.1161/JAHA.112.002568

Levi-Polyachenko N., Merkel E., Jones B., Carroll D., Stewar J. H., 2009. Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes. Molecular. Pharmaceutics 6 (4): 1092-1099.

Liu Z., Davis C., Cai W., He L., Chen X., and Dai H., 2008. Circulation and long-term fate of functionalized, bio-compatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410 –1415.

Loo C., Lowery A, Halas N, West J, Drezek R., 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5 (4): 709 –711.

Madani S., Tan A., Dwek M., Seifalian A., 2012. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine 7: 905-914.

Manthe R., Foy S., Krishnamurthy N., Sharma B., Labhasetwar V., 2010. Tumor Ablation and Nanotechnology. Molecular Pharmaceutics 7 (6): 1880-1898.

Marega R, Aroulmoji V, Bergamin M, Feruglio L, Dinon F, Bianco A., 2010. Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano. 4 (4): 2051-8.

Marega R., Aroulmoji V., Dinon F., Vaccari L., Giordani S., Bianco A., Murano E. and Prato M., 2009. Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. J. Am Chem Soc 131 (25): 9086–909—New Insights, Angew. Chem. Int. Ed. 44 (4): 520– 55.

Moon H., Lee S., Choi H., 2009. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 3 (11): 3707-3713.

Nelson D. J. and Kumar R., 2013. Characterizing Covalently Sidewall-Functionalized Single-Walled Carbon Nanotubes by Using 1H NMR Spectroscopy. J. Phys. Chem. C 117: 14812−14823.

Nikfarjam M, Muralidharan V, Christophi C., 2005. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127: 208–223.

Niu L., Meng L., Lu Q., 2013. Folate-Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells, Macromol Biosci 13 (6): 735–744.

Novoa, L. V., 2012. Actividad de nanotubos de carbono acoplados a ácido fólico contra Leishmania panamensis después de irradiación con luz infrarroja cercana, Trabajo de Maestría en Ciencias básicas de la Escuela de Medicina, dirigida por Patricia Escobar R. UIS.

Pavitra Chakravarty, Radu Marches, Neil S. Zimmerman, Austin D.-E. Swafford, Pooja Bajaj, Inga H. Musselman, Paul Pantano, Rockford K. Draper, and Ellen S. Vitetta, 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes, PNAS 105 (25): 8697– 8702.

Robinson J., Welsher K., Tabakman S., Sherlock S., Wang h., Luong R., Dai H. , 2010. High PerformanceIn VivoNear-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Nano Res. 3 (11): 779-793.

Tong R., Chiang H. H., and Kohane D. S., 2013. Photoswitchable nanoparticles for in vivo cancer chemotherapy. PNAS 110 (47): 19048–19053.

Vardharajula S., Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis V.A, Singh S.R., 2012. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine (7): 5361-74.

WANG H., ZHAO Y-L., and NIE G-J., 2013. Multifunctional nanoparticle systems for combined chemo-and photothermal cancer therapy. Front. Mater. Sci. 7 (2): 118–128.Zhang Y L. X, Tang HM. D, Xie Q. T. L, Yao S, 2013. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces 111C: 224-231.

Wadzanai, C., y Tebello, N., 2010. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon48(10): 2831-2838.

Zhao D., Alizadeh D., Zhang L., W. Liu, Farrukh O., Manuel E., Diamond D. J. and Badie B., 2011. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clin Cancer Res 17 (4): 771-782.

Zhou F.F., Wu S.N., Wu B.Y., Chen W.R., Xing D., 2011. Mitochondria-Targeting Single-Walled Carbon Nanotubes for Cancer Photothermal Therapy, Small 7 (19): 2727–2735.

Zhuang L., Corrine D., Weibo C., Lina H., Xiaoyuan C., and Hongjie D., 2008. Circulation and long-term fate of func-tionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410–1415.

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.