Hongos micorrízicos arbusculares (HMA) en bosques secos tropicales (BST) afectados por fuego y depósitos fluviovolcánicos en el departamento del Tolima, Colombia
PDF

Archivos suplementarios

Tabla 1S
Tabla 2S

Cómo citar

Devia-Grimaldo, L. D., Peréz-Moncada, U. A. ., López-D, E. O. ., & Varón-López, M. . (2021). Hongos micorrízicos arbusculares (HMA) en bosques secos tropicales (BST) afectados por fuego y depósitos fluviovolcánicos en el departamento del Tolima, Colombia. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(177), 1137–1153. https://doi.org/10.18257/raccefyn.1482

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

El bosque seco tropical concentra la mayor parte de la biodiversidad del mundo y, sin embargo, es uno de los ecosistemas más degradados en Colombia. Para su conservación es importante conocer la diversidad de microorganismos del suelo que lo integran, como los hongos micorrízicos arbusculares (HMA). En este estudio se evaluó el efecto del fuego y los depósitos fluviovolcánicos en la composición, abundancia y diversidad de los HMA en suelos de bosque seco tropical del departamento del Tolima, Colombia. El estudio se desarrolló en cuatro áreas: dos con vegetación nativa en la Reserva Natural Santafé de los Guaduales (RN) y en Armero (AN), otra afectada por el fuego de un incendio forestal (RQ) y la cuarta por depósitos  fluviovolcánicos (ADV). La identificación de las morfoespecies de HMA se hizo mediante la extracción de esporas directamente del suelo (SD) y en cultivos trampa (CT) con el método de tamización en húmedo con posterior montaje en láminas y observación microscópica de la morfología de las esporas. Se identificaron 64 morfoespecies pertenecientes a cuatro órdenes, nueve familias y 17 géneros, de las cuales la familia Glomeraceae presentó el mayor número de morfoespecies indicadoras. En las cuatro áreas evaluadas se registraron diferencias significativas en la composición, abundancia y diversidad de las comunidades de HMA, siendo RQ el área con la mayor abundancia y diversidad, seguida de AN. Estos resultados representan un importante aporte al conocimiento de las comunidades de microorganismos del bosque seco tropical y su respuesta ante diferentes eventos antrópicos y naturales, y contribuye al inventario nacional de los HMA.

https://doi.org/10.18257/raccefyn.1482

Palabras clave

Hongos que forman micorriza arbuscular | Hongos del suelo | Cultivos trampa | Bosque seco tropical | Perturbaciones
PDF

Referencias

Aguilera, P., Cornejo, P., Borie, F., Barea, J. M., von Baer, E., Oehl, F. (2014). Diversity of arbuscular mycorrhizal fungi associated with Triticum aestivum L. plants growing in an Andosol with high aluminum level. Agriculture, Ecosystems and Environment. 186: 178-184.

Álvarez‐Lopeztello, J., Hernández‐Cuevas, L. V., del Castillo, R. F., Robles, C. (2019). Diversity of arbuscular mycorrhizal fungi associated with Brachiaria brizantha pastures in lowlands of Oaxaca, Mexico. Grassland Science. 65 (3): 197-201.

Allen, E. B., Allen, M. F., Egerton-Warburton, L., Corkidi, L., Gómez-Pompa, A. (2003). Impacts of early‐and late‐seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecological Applications. 13 (6): 1701-1717.

Ambrosino, M. L., Cabello, M. N., Busso, C. A., Velázquez, M. S., Torres, Y. A., Cardillo, D. S., Rodríguez, G. (2018). Communities of arbuscular mycorrhizal fungi associated with perennial grasses of different forage quality exposed to defoliation. Journal of Arid Environments. 154: 61-69.

Auge, R.M. (2001). Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza. 11: 3-42.

Atunnisa, R. & Ezawa, T. (2019). Nestedness in arbuscular mycorrhizal fungal communities in a volcanic ecosystem: selection of disturbance-tolerant fungi along an elevation gradient. Microbes and environments. ME19073.

Balázs, T. K., Blaszkowski, J., Chwat, G., Góralska, A., Gáspár, B. K., Lukács, A. F., Kovács, G. M. (2015). Spore-based study of arbuscular mycorrhizal fungi of semiarid sandy áreas in Hungary, with Diversispora jakucsiae sp. Nov. Mycol. Prog. 14: 1-11.

Bocanegra-González, K. T., Thomas, E., Guillemin, M. L., de Carvalho, D., Gutiérrez, J. P., Caicedo, C. A., González, M. A. (2018). Genetic diversity of Ceiba pentandra in Colombian seasonally dry tropical forest: Implications for conservation and management. Biological Conservation. 227: 29-37.

Borie, F., Aguilera, P., Castillo, C., Valentine, A., Seguel, A., Barea, J. M., Cornejo, P. (2019). Revisiting the nature of phosphorus pools in Chilean volcanic soils as a basis for arbuscular mycorrhizal management in plant acquisition. Journal of Soil Science and Plant Nutrition. 19 (2): 390-401.

Błaszkowski, J. & Chwat, G. (2013). Septoglomus deserticola emended and new combinations in the emended definition of the family Diversisporaceae. Acta Mycologica. 48 (1): 89-103.

Brundrett, D.L., Glytsis, E.N., Gaylord, T.K. (1994). Modelos de capas homogéneas para rejillas de relieve superficial dieléctricas de alta frecuencia espacial: diseños de difracción cónica y antirreflejos. Óptica aplicada. 33 (13): 2695-2706.

Brundrett, M. C. & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist. 220 (4): 1108-1115.

Carrillo-Saucedo, S. M., Gavito, M. E. Siddique, I. (2018). Arbuscular mycorrhizal fungal spore communities of a tropical dry forest ecosystem show resilience to land-use change. Fungal Ecology. 32: 29-39.

Carson, C. M., Jumpponen, A., Blair, J. M., Zeglin, L. H. (2019). Soil fungal community changes in response to long-term fire cessation and N fertilization in tallgrass prairie. Fungal Ecology. 41: 45-55.

Castillo, C. G., Puccio, F., Morales, D., Borie, F., Sieverding, E. (2012). Early arbuscular mycorrhiza colonization of wheat, barley and oats in Andosols of southern Chile. Journal of Soil Science and Plant Nutrition. 12 (3): 511-524.

Cofré, N., Urcelay, C., Wall, L. G., Domínguez, L., Becerra, A. (2018). El potencial de colonización micorrícico-arbuscular varía entre prácticas agrícolas y sitios en diferentes áreas geográficas de la región Pampeana. Ecología Austral. 28 (3): 581-592.

Coroi, M., Skeffington, M. S., Giller, P., Smith, C., Gormally, M., O’Donovan, G. (2004). Vegetation diversity and stand structure in streamside forests in the south of Ireland. Forest Ecology and Management. 202 (1-3): 39-57.

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs. 84 (1): 45-67.

Chagnon, P. L., Bradley, R. L., Maherali, H., Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science. 18 (9): 484-491.

Chaudhary, V. B., O’Dell, T. E., Rillig, M. C., Johnson, N. C. (2014). Multiscale patterns of arbuscular mycorrhizal fungal abundance and diversity in semiarid shrublands. Fungal Ecology. 12: 32-43.

Claridge, A. W., Trappe, J. M., Hansen, K. (2009). Do fungi have a role as soil stabilizers and remediators after forest fire? Forest Ecology and Management. 257 (3): 1063-1069.

Davison, J., Moora, M., Jairo, T., Vasar, M., Öpik, M., Zobel, M. (2016). Reglas de ensamblaje jerárquico en comunidades de hongos micorrízicos arbusculares (AM). Biología y Bioquímica del Suelo. 97: 63-70.

Day, N. J., Dunfield, K. E., Johnstone, J. F., Mack, M. C., Turetsky, M. R., Walker, X. J., Baltzer, J. L. (2019). Wildfire severity reduces richness and alters composition of soil fungal communities in boreal forests of western Canada. Global Change Biology. 25 (7): 2310-2324.

de Assis, D. M. A., De Melo, M. A. C., da Silva, D. K. A., Oehl, F., da Silva, G. A. (2018). Assemblages of arbuscular mycorrhizal fungi in tropical humid and dry forests in the Northeast of Brazil. Botany. 96 (12): 859-871.

Dhillion, S.S., Andersen, R.C., Liberta, A.E. (1988). Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Can. J. Bot. 66: 706-713.

Dove, N. C. & Hart, S. C. (2017). Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecology. 13 (2): 37-65.

Dudinszky, N., Cabello, M. N., Grimoldi, A. A., Schalamuk, S., Golluscio, R. A. (2019). Role of grazing intensity on shaping arbuscular mycorrhizal fungi communities in Patagonian semiarid steppes. Rangeland Ecology and Management. 72 (4): 692-699.

Dufrêne, M. & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs. 67 (3): 345-366.

Esquivel, H. E., Tinoco, F., Torres, A. J. (2016). La sucesión vegetal en los lodos fluviovolcánicos de Armero-Tolima-Colombia 30 años después de la erupción del volcán Arenas del Nevado del Ruiz: Plant succession in the fluvial-volcanic mud from Armero-Tolima- Colombia 30 years after the eruption of the “Nevado del Ruiz” Volcano. Caldasia. 38 (1): 101-116.

García, C., Franco, D., Arturo, M., Quintero, J., Rao, I. M. (2000). Catálogo de cepas de micorrizas arbusculares.Colombia. Garcia, K., Doidy, J., Zimmermann, S. D., Wipf, D., Courty, P. E. (2016). Take a trip through the plant and fungal transportome of mycorrhiza. Trends in Plant Science. 21 (11): 937–950.

Gemma, J. N. & Koske, R. E. (1990). Mycorrhizae in recent volcanic substrates in Hawaii. American Journal of Botany. 77 (9): 1193-1200.

Gerdemann, J. W. & Nicolson, T. H. (1963). Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society. 46(2): 235-244.

Girma, G. (2015). Microbial bioremediation of some heavy metals in soils: an updated review. Egyptian Academic Journal of Biological Sciences. G. Microbiology. 7 (1): 29-45.

Gómez, A.F. & Sánchez de Prager, M. (2012). Actividad biológica de hongos formadores de micorriza arbuscular en un suelo humic dystrudepts cultivado con maíz y diferentes fuentes de fertilización. Acta Agronómica. 61 (5): 57.

Guzmán, O.A., Castaño-Zapata, J., Sánchez de Prager, M. (2013). Estudio preliminar del efecto de microorganismos benéficos sobre el tomate (Solanum lycopersicum L.) y el nematodo del nudo radical (Meloidogyne spp.) Revista Agronomía. 21: 51-64.

Guzman, A., Montes, M., Hutchins, L., DeLaCerda, G., Yang, P., Kakouridis, A., Dahlquist-Willard, R. M., Firestone, M. K., Kremen, C. (2021). Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist. 231(1): 447-459.

Hage-Ahmed, K., Rosner, K., Steinkellner, S. (2019). Arbuscular mycorrhizal fungi and their response to pesticides. Pest Management Science. 75 (3): 583-590

Helgason, T., Merryweather, J. W., Young, J. P. W., Fitter, A. H. (2007). Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. Journal of Ecology. 95(4): 623-630.

Hernández-Ortega, H. A., Alarcón, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., López- Delgado, H. A., Mendoza-López, M. R. (2012). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management. 95: S319-S324.

Herrera, E. M. C. & Arana, R. C. (2010). Hongos micorrizo arbusculares asociados a los principales cultivos de los suelos sulfatados ácidos de Córdoba, Colombia. Suelos Ecuatoriales. 40 (1): 57-61

Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology. 54(2): 427-432.

Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347 p. (2nd edition).

Holden, S. R., Rogers, B. M., Treseder, K. K., Randerson, J. T. (2016). Fire severity influences the response of soil microbes to a boreal forest fire. Environmental Research Letters. 11 (3):035004.

Holste, E. K., Holl, K. D., Zahawi, R. A., Kobe, R. K. (2016). Reduced aboveground tree growth associated with higher arbuscular mycorrhizal fungal diversity in tropical forest restoration. Ecology and Evolution. 6 (20): 7253-7262.

Hontoria, C., García-González, I., Quemada, M., Roldán, A., Alguacil M.M. (2019). El cultivo de cobertura determina la composición de la comunidad de HMA en el suelo y en las raíces del maíz después de una rotación continua de cultivos de diez años. Science of the Total Environment. 660: 913-922.

Jiang, S., Hu, X., Kang, Y., Xie, C., An, X., Dong, C., Shen, Q. (2020). Arbuscular mycorrhizal fungal communities in the rhizospheric soil of litchi and mango orchards as affected by geographic distance, soil properties and manure input. Applied Soil Ecology. 152: 103593.

Keymer, A. & Gutjahr, C. (2018). Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion in Plant Biology. 44: 137-144.

Krüger, M., Teste, F. P., Laliberté, E., Lambers, H., Coghlan, M., Zemunik, G., Bunce, M. (2015). The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Molecular Ecology. 24 (19): 4912-4930.

Lanfranco, L., Fiorilli, V., Gutjahr, C. (2018). Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist. 220 (4): 1031-1046.

Leal, P. L., Siqueira, J. O., Stuermer, S. L. (2013). Switch of tropical Amazon forest to pasture affects taxonomic composition but not species abundance and diversity of arbuscular mycorrhizal fungal community. Applied Soil Ecology. 71: 72-80.

Lindahl, B. D., Ihrmark, K., Boberg, J., Trumbore, S. E., Hogberg, P., Stenlid, J., Finlay, R. D. (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist. 173: 611-620.

Longo, S., Nouhra, E., Goto, B. T., Berbara, R. L., Urcelay, C. (2014). Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management. 315: 86-94.

Mahdhi, M., Tounekti, T., Abada, E., Al‐Faifi, Z., Khemira, H. (2020). Diversity of arbuscular mycorrhizal fungi associated with acacia trees in southwestern Saudi Arabia. Journal of Basic Microbiology. 60 (4): 322-330.

Marinho, F., Oehl, F., da Silva, I. R., Coyne, D., da Nóbrega Veras, J. S., Maia, L. C. (2019). High diversity of arbuscular mycorrhizal fungi in natural and anthropized sites of a Brazilian tropical dry forest (Caatinga). Fungal Ecology. 40: 82-91.

Martínez-García, L. B., Richardson, S. J., Tylianakis, J. M., Peltzer, D. A., Dickie, I. A. (2015). Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist. 205 (4): 1565-1576.

Mirzaei, J. (2016). Impacts of two spatially and temporally isolated anthropogenic fire events on soils of oak-dominated Zagros forests of Iran. Turkish Journal of Agriculture and Forestry. 40 (1): 109-119. Doi: 10.3906/TAR-1406-61

Montenegro-Gómez, S.P., Gómez-Posada, S., Barrera-Berdugo, S.E. (2017). Efecto de la gallinaza sobre Azotobacter sp., Azospirillum sp., y hongos micorrízicos arbusculares en un cultivo de cebolla (Allium fitulosum). Revista Entramado. 26: 250-257.

Morton, J. B. (1988). Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon. 32: 267-324.

Morton, J.B. & Benny, G.L. (1990). Clasificación revisada de hongos micorrízicos arbusculares (Zygomycetes): un nuevo orden, Glomales, dos nuevos subórdenes, Glomineae y Gigasporineae, y dos nuevas familias, Acaulosporaceae y Gigasporaceae, con una enmienda de Glomaceae. Mycotaxon. 37: 471-491.

Morton, J. B., Bentivenga, S. P., Bever, J. D. (1995). Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can. J. Bot. 73(S1): 25-32.

Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J-L., De Deyn, G. B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N. C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F. M. S., Ramírez, K. S., Scheu, S., Singh, B. K., Six, J., van der Putten, W. H., Wall, D. H. (Eds.) (2016). Global soil biodiversity atlas. European Commission. European Commission, Publications Office of the European Union, Luxembourg. 176 pp.

Peña-Venegas, C.P. (2015). People, soil and manioc interactions in the upper Amazon region. PhD. Thesis. Wageningen University ISBN: 978–94–6257–322–2.

Peña-Venegas, C. P. & Vasco-Palacios, A. M. (2019). Endo- and Ectomycorrhizas in Tropical Ecosystems of Colombia. En Pagano, M. C., & Lugo, M. A. (Eds.), Mycorrhizal fungi in South America. (pp 111-145). Springer.

Pereira, C. M., Goto, B. T., da Silva, D. A., de Ferreira, A. A., de Souza, F. A., da Silva, G. A., ...& Oehl, F. (2015). Acaulospora reducta sp. nov. and A. excavata-two glomeromycotan fungi with pitted spores from Brazil. Mycotaxon. 130 (4): 983-995.

Pérez, Y. & Schenck, N.C. (1990). Un código único para cada especie de hongos micorrízicos VA. Micología. 82 (2): 256-260.

Pizano, C. & García, H. (2014). El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt, Bogotá (Colombia) Ministerio de Ambiente y Desarrollo Sostenible, Bogotá (Colombia).

Posada, R. H., de Prager, M. S., Heredia-Abarca, G., Sieverding, E. (2018). Effects of soil physical and chemical parameters, and farm management practices on arbuscular mycorrhizal fungi communities and diversities in coffee plantations in Colombia and México. Agroforestry Systems. 92 (2): 555-574.

Purin, S. & Rillig, M.C. (2007). La proteína fúngica micorrízica arbuscular glomalina: Limitaciones, avances y una nueva hipótesis para su función. Pedobiologia. 51 (2): 123-130.

Phillips, M. L., Weber, S. E., Andrews, L. V., Aronson, E. L., Allen, M. F., Allen, E. B. (2019). Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecology. 40: 107-117.

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Ramírez-Gómez, M., Pérez-Moncada, U., Serralde-Ordóñez, D., Peñaranda-Rolón, A., Roveda-Hoyos, G., Rodríguez, A. (2019). Diversity of arbuscular mycorrhizal fungi communities associated with cape gooseberry (Physalis peruviana L.) crops. Agronomía Colombiana. 37(3): 239-254.

Řezáčová, V., Slavíková, R., Konvalinková, T., Zemková, L., Řezáč, M., Gryndler, M., Jansa, J. (2019). Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza. 29 (6): 567-579.

Rillig, M. C. & Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist. 171:41-53.

Rodriguez, A. & Sanders, I. R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved foodsecurity. The ISME Journal. 9 (5): 1053-1061.

Rodríguez-López, C. P., de León, A. N., Arboleda-Valencia, J. W., Valencia-Jiménez, A., Valle-Molinares, R. H. (2015). Hongos micorrizógenos arbusculares asociados a plantas de Zea mays l. en un agroecosistema del Atlántico, Colombia. Agronomía. 23 (1):20-34.

Rodrigues, L. A., da Silva, D. K. A., Yano-Melo, A. M. (2021). Arbuscular mycorrhizal fungal assemblages in conservation unit of Atlantic forest areas under native vegetation and natural regeneration. Microbial Ecology. 82: 122-134.

Saini, R. & Sharma, S. (2019). Climate resilient microbes in sustainable crop production. Contaminants in Agriculture and Environment: Health Risks and Remediation. 1: 264.

Sánchez de Prager, M., Posada, R., Velásquez, D., Narváez, M. (2010). Metodologías básicas para el trabajo con micorriza arbuscular y hongos formadores de micorriza arbuscular. Universidad Nacional de Colombia sede Palmira. 36 p.

Sandoval-Pineda, J. F., Pérez-Moncada, U. A., Rodríguez, A., Torres-Rojas, E. (2020). High cadmium concentration resulted in low arbuscular mycorrhizal fungi community diversity associated to cocoa (Theobroma cacao L.). Acta Biológica Colombiana. 25 (3): 333-344.

Satti, P., Mazzarino, M. J., Roselli, L., Crego, P. (2007). Factors affecting soil P dynamics in temperate volcanic soils of southern Argentina. Geoderma. 139 (1-2): 229-240.

Seguel, A., Castillo, C. G., Morales, A., Campos, P., Cornejo, P., Borie, F. (2016). Arbuscular mycorrhizal symbiosis in four Al-tolerant wheat genotypes grown in an acidic Andisol. Journal of soil science and plant nutrition. 16 (1): 164-173.

Sieverding, E. (1991). Ecology of VAM fungi in tropical agrosystems. Agriculture, Ecosystems & Environment. 9 (1): 369-390.

Sieverding, E., Berndt, R., Oehl, F. (2014). Rhizoglomus, a new genus of the Glomeraceae. Mycotaxon. 129 (2): 373-386.

Sousa, N. M. F., Veresoglou, S. D., Oehl, F., Rillig, M. C., Maia, L. C. (2018). Predictors of arbuscular mycorrhizal fungal communities in the Brazilian tropical dry forest. Microbial Ecology. 75 (2): 447-458.

Sun, J., Miller, J. B., Granqvist, E., Wiley-Kalil, A., Gobbato, E., Maillet, F., Maillet, F., Cottaz, S., Samain, E., Venkateshwaran, M., Fort, S., Morris, R. J., Ané, J., Dénarié, J., Oldroyd, G. E. (2015). Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. The Plant Cell. 27 (3): 823-838.

Smith, S. E., Jakobsen, I., Grønlund, M., Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology. 156 (3): 1050-1057.

Stürmer, S. L., Bever, J. D., Morton, J. B. (2018). Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza. 28 (7): 587-603.

Tejeda-Cruz, C., Mehltreter, K., Sosa, V. J. (2008). Indicadores ecológicos multi-taxonómicos. Agroecosistemas cafetaleros de Veracruz. Biodiversidad, Manejo y Conservación. 78: 271-278.

Tipton, A. G., Middleton, E. L., Spollen, W. G., Galen, C. (2019). Anthropogenic and soil environmental drivers of arbuscular mycorrhizal community composition differ between grassland ecosystems. Botany. 97 (1): 85-99.

Torres-Benítez, A. J. (2013). Estudio de la composición fisicoquímica de los lodos fluviovolcánicos de Armero, Tolima, y su relación con los procesos de sucesión vegetal 25 años después de la erupción del volcán arenas del nevado del Ruíz. Tesis pregrado, Universidad del Tolima.

Turrini, A. & Giovannetti, M. (2012). Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza. 22 (2): 81-97.

Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza. 18 (4): 181-195.

Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M., Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology. 105 (4): 921-929.

Trejo, D., Barois, I. & Sangabriel-Conde, W. (2016). Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agroforestry Systems. 90 (2): 265-279.

van Der Heijden, M. G., Wiemken, A., Sanders, I. R. (2003). Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co‐occurring plant. New Phytologist. 157 (3): 569-578.

van der Heijden, M. G. A. & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology. 97: 1139-1150.

van der Heyde, M., Ohsowski, B., Abbott, L. K., Hart, M. (2017). Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza. 27 (5): 431-440.

Verma, S. & Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A Review. Proceedings of the International Academy of Ecology and Environmental Sciences. 2 (3): 168-176.

Verma, S. & Jayakumar, S. (2015). Post-fire regeneration dynamics of tree species in a tropical dry deciduous forest, Western Ghats, India. Forest Ecology and Management. 341: 75-82.

Verma, S. & Jayakumar, S. (2018). Effect of recurrent fires on soil nutrient dynamics in a tropical dry deciduous forest of Western Ghats, India. Journal of Sustainable Forestry. 37 (7): 678-690.

Wang, J., Wang, G. G., Zhang, B., Yuan, Z., Fu, Z., Yuan, Y., Zhang, J. (2019). Arbuscular mycorrhizal fungi associated with tree species in a planted forest of eastern China. Forests. 10(5): 424.

Whitman, T., Whitman, E., Woolet, J., Flannigan, M. D., Thompson, D. K., Parisien, M. A. (2019). Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biology and Biochemistry. 138: 107571.

Wu, B., Hogetsu, T., Isobe, K., Ishii, R. (2007). Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji. Mycorrhiza. 17 (6): 495-506.

Xiang, X., Gibbons, S. M., Yang, J., Kong, J., Sun, R., Chu, H. (2015). Arbuscular mycorrhizal fungal communities show low resistance and high resilience to wildfire disturbance. Plant and Soil. 397 (1-2): 347-356.

Xu, X., Chen, C., Zhang, Z., Sun, Z., Chen, Y., Jiang, J., Shen, Z. (2017). The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Scientific Reports. 7: 1-11.

Zhang, Y., Guo, L. D. & Liu, R. J. (2004). Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant and Soil. 261 (1): 257-263.

Zhang, X., Chen, B., & Ohtomo, R. (2015). Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition. 61 (2): 359-368.

Zhang, B., Li, S., Chen, S., Ren, T., Yang, Z., Zhao, H., Han, X. (2016). Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports. 6: 1-10.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales