Cascarilla de cebada como sustrato para la producción de enzimas y azúcares reductores usando Penicillium sp. HC1
PDF (English)

Archivos suplementarios

Supplementary material

Cómo citar

Bernal-Ruiz, M. ., Correa-Lozano, A. ., Gomez-Sánchez, L. ., Quevedo-Hidalgo, B. ., Rojas-Pérez, L. C. ., García-Castillo, C. ., Gutiérrez-Rojas, I. ., & Narváez-Rincón, P. C. . (2021). Cascarilla de cebada como sustrato para la producción de enzimas y azúcares reductores usando Penicillium sp. HC1. RACCEFYN, 45(176), 850–863. https://doi.org/10.18257/raccefyn.1379

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas

Resumen

La cascarilla de cebada (brewer’s spent grain, BSG) es el principal residuo sólido del proceso cervecero. Es un recurso valioso para las industrias de base biológica por su composición, alta disponibilidad y bajo costo. El objetivo de este trabajo fue emplearla como sustrato para producir endoglucanasas, celobiohidrolasas, β-glucosidasas y xilanasas, así como azúcares reductores utilizando Penicillium sp. HC1. Se evaluaron fermentaciones sumergidas a nivel en matraz de 100 mL para la producción de enzimas. Se estudió el efecto de la concentración de BSG (1, 3 y 5 % p/v) y la fuente de nitrógeno (extracto de levadura y sulfato de amonio) a los 6, 10 y 12 días. La mayor actividad de todas las enzimas evaluadas se obtuvo a los 10 días. La mayor actividad de xilanasas (25.013±1.075 U L-1) se obtuvo con 3 % de BSG (p/v) y 5 g L-1 de sulfato de amonio. Al usar BSG al 5 % (w/v) sin suplementación de nitrógeno, se obtuvo la mayor actividad de endoglucanasas (909,7±14,2 U L-1), en tanto que en las mismas condiciones, pero empleando BSG 3 % (w/v), las actividades de β-glucosidasas y celobiohidrolasas fueron 3268,6±229,9 U L-1 y 103,15±8,1 U L-1, respectivamente. Las concentraciones máximas de azúcares reductores usando una dosis de 1000 U g-1 de xilanasas fueron: 2,7 g L-1 de xilosa, 1,7 g L-1 de arabinosa y 3,3 g L-1 de glucosa, después de 6 h. Los resultados demostraron que es posible producir enzimas y azúcares reductores usando Penicillium sp. HC1 y BSG como sustrato y la molienda como único pretratamiento. 

https://doi.org/10.18257/raccefyn.1379

Palabras clave

Cascarilla de cebada | Penicillium sp | Xilanasa | Azúcares reductores | Hidrolizado | producción de celulasas
PDF (English)

Referencias

Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology. 23 (3): 257-270. https://doi.org/10.1016/0168-1656(92)90074-J

Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2006). Supplementation requirements of brewery’s spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. Journal of Industrial Microbiology and Biotechnology. 33 (8): 646-654. https://doi.org/10.1007/s10295-006-0101-8

Chávez, R., Bull, P., & Eyzaguirre, J. (2006). The xylanolytic enzyme system from the genus Penicillium. Journal of Biotechnology. 123 (4): 413-433. https://doi.org/10.1016/j.jbiotec.2005.12.036

Corchado-Lopo, C., Martínez-Avila, O., Marti, E., Llimós, J., Busquets, A. M., Kucera, D., Ponsá, S. (2021). Brewer’s spent grain as a no-cost substrate for polyhydroxyalkanoates production: Assessment of pretreatment strategies and different bacterial strains. New Biotechnology. 62: 60-67. https://doi.org/10.1016/j.nbt.2021.01.009

de Siqueira, F. G., de Siqueira, A. G., de Siqueira, E. G., Carvalho, M. A., Peretti, B. M. P., Jaramillo, P. M. D., Filho, E. X. F. (2010). Evaluation of holocellulase production by plantdegrading fungi grown on agro-industrial residues. Biodegradation. 21 (5): 815-824. https://doi.org/10.1007/s10532-010-9346-z

de Sousa Gomes, K., Maitan-Alfenas, G. P., de Andrade, L. G. A., Falkoski, D. L., Guimarães, V. M., Alfenas, A. C., & de Rezende, S. T. (2017). Purification and Characterization of Xylanases from the Fungus Chrysoporthe cubensis for Production of Xylooligosaccharides and Fermentable Sugars. Applied Biochemistry and Biotechnology. 182 (2): 818-830. https://doi.org/10.1007/s12010-016-2364-5

Driss, D., Bhiri, F., & Ellouz, S. (2012). Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33 : Purification and characterization. Protein Expression and Purification. 83(1): 8-14. https://doi.org/10.1016/j. pep.2012.02.012

Garai, D., & Kumar, V. (2013). A Box-Behnken design approach for the production of xylanase by Aspergillus candidus under solid state fermentation and its application in saccharification of agro residues and Parthenium hysterophorus L. Industrial Crops and Products. 44: 352-363.https://doi.org/10.1016/j.indcrop.2012.10.027

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry. 59 (2): 257.

Gubatz, S., & Shewry, P. R. (2011). The Development, Structure, and Composition of the Barley Grain. In S. E. Ullrich (Ed.), Barley: Production, Improvement, and Uses (Firts, pp. 391-448). Ames, Iowa, USA: Blackwell Publishing Ltd. https://doi.org/10.1002/9780470958636.ch13

Gutiérrez-Rojas, I., Matiz-Villamil, A., Aguirre-Morales, M., R.-, Pineda, E., Lemos-Gordo, S.N., Méndez-Pedraza, J.M., N.-, Arbeláez, Á.J., Parra-Fajardo, L.N., Alfonso-Piragua, A., A.-, & Herrera, D. (2011). Estimacion de poblaciones de microorganismos ligninoliticos y celuloliticos y actividad de β-glucosidasa en agrosistemas de arroz. In D. Uribe-Velez & L. Melgarejo (Eds.), Ecologia de microorganismos rizosfericos (pp. 89-109). Bogotá: Universidad Nacional de Colombia.

Hassan, S. S., Tiwari, B. K., Williams, G. A., & Jaiswal, A. K. (2020). Bioprocessing of brewers’ spent grain for production of xylanopectinolytic enzymes by Mucor sp. Bioresource Technology Reports, 9 (October 2019), 100371. https://doi.org/10.1016/j.biteb.2019.100371

Hyman, A. Sluiter, D. Crocker, D. J., & J. Sluiter, S. Black, and C. S. (2008). Determination of acid soluble lignin concentration curve by UV-Vis spectroscopy laboratory analytical procedure (LAP). National Renewable Energy Laboratory: Laboratory Analytical Procedure (LAP). (National Renewable Energy Laboratory, Ed.). Golden, Colorado, USA: National Renewable Energy Laboratory.

Jackowski, M., Nied´zwiecki, Ł., Jagiełło, K., Ucha ´nska Oliwia, & Trusek, A. (2020). Brewer ’ s Spent Grains — Valuable Beer Industry By-Product. Biomolecules. 10 (1669): 1-18.

Knob, A., Terrasan, C. R. F., & Carmona, E. C. (2010). β-Xylosidases from filamentous fungi: An overview. World Journal of Microbiology and Biotechnology. 26 (3): 389-407. https://doi.org/10.1007/s11274-009-0190-4

Knob, Adriana, Beitel, S. M., Fortkamp, D., Rafael, C., Terrasan, F., & Almeida, A. F. De. (2013). Production, Purification, and Characterization of a Major Penicillium glabrum Xylanase Using Brewer’s Spent Grain as Substrate. Hindawi Publishing Corporation. 2013: 1-8.

Li, J., Hu, X., Yan, X., Li, X., Ma, Z., & Liu, L. (2018). Effects of hydrolysis by xylanase on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Food Hydrocolloids. 76: 158-163. https://doi.org/10.1016/j.foodhyd.2016.12.015

Liao, H., Xu, C., Tan, S., Wei, Z., Ling, N., Yu, G., Xu, Y. (2012). Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. Bioresource Technology. 123: 117-124. https://doi.org/10.1016/j.biortech.2012.07.051

Lynch, K. M., Steffen, E. J., & Arendt, E. K. (2016). Brewers’ spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing. 122 (4): 553-568. https://doi.org/10.1002/jib.363

Mandels, M., & Weber, J. (1969). The Production of Cellulases. In George J. ElwynHajny & T. Reese (Eds.), Cellulases and Their Applications (pp. 391-414). https://doi.org/10.1021/ba1969-0095.ch023

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry. 31(3): 426-428. https://doi.org/10.1021/ac60147a030

Moteshafi, H., Hashemi, M., Mousavi, S. M., & Mousivand, M. (2016). Characterization of produced xylanase by Bacillus subtilis D3d newly isolated from apricot phyllosphere and its potential in pre-digestion of BSG. Journal of Industrial and Engineering Chemistry. 37: 251-260. https://doi.org/10.1016/j.jiec.2016.03.036

Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewers’ spent grain: Generation, characteristics and potential applications. Journal of Cereal Science. 43 (1): 1-14. https://doi.org/10.1016/j.jcs.2005.06.001

Mussatto, S. I., & Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry. 43 (5): 540-546. https://doi.org/10.1016/procbio.2008.01.013

Mussatto, S.I., Moncada, J., Roberto, I. C., & Cardona, C. A. (2013). Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology. 148: 302-310. https://doi.org/10.1016/j.biortech.2013.08.046

Mussatto, Solange I. (2014). Brewer ’ s spent grain : a valuable feedstock for industrial applications, (January). https://doi.org/10.1002/jsfa.6486

Olajire, A. A. (2020). The brewing industry and environmental challenges. Journal of Cleaner Production. 256: 102817. https://doi.org/10.1016/j.jclepro.2012.03.003

Ouephanit, C., Boonvitthya, N., Theerachat, M., Bozonnet, S., & Chulalaksananukul, W. (2019). Efficient expression and secretion of endo-1,4-β-xylanase from Penicillium citrinum in non-conventional yeast Yarrowia lipolytica directed by the native and the preproLIP2 signal peptides. Protein Expression and Purification. 160: 1-6. https://doi.org/10.1016/pep.2019.03.012

Paz, A., Outeiriño, D., Guerra, N. P., & Domínguez, J. M. (2019). Bioresource Technology Enzymatic hydrolysis of brewer ’ s spent grain to obtain fermentable sugars. Bioresource Technology. 275: 402-409. https://doi.org/10.1016/j.biortech.2018.12.082

Pedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology. 55 (9): 711-719. https://doi.org/10.1007/s12275-017-6282-1

Puligundla, P., & Mok, C. (2021). Recent advances in biotechnological valorization of brewers’ spent grain. Food Science and Biotechnology. 30 (3): 341-353. https://doi.org/10.1007/s10068-021-00900-4

Rafiqul, I. S. M., Sakinah, A. M. M., & Karim, M. R. (2014). Production of Xylose from Meranti wood sawdust by dilute acid hydrolysis. Applied Biochemistry and Biotechnology. 174 (2): 542-555. https://doi.org/10.1007/s12010-014-1059-z

Schneider, W. D. H., Dos Reis, L., Camassola, M., & Dillon, A. J. P. (2014). Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. BioMed Research International, 2014, 10 pages. https://doi.org/10.1155/2014/254863

Shen, Y., Abeynayake, R., Sun, X., Ran, T., Li, J., Chen, L., & Yang, W. (2019). Feed nutritional value of brewers ’ spent grain residue resulting from protease aided protein removal. 1: 1-10.

Shi, Q. Q., Sun, J., Yu, H. L., Li, C. X., Bao, J., & Xu, J. H. (2011). Catalytic performance of corn stover hydrolysis by a new isolate Penicillium sp. ECU0913 producing both cellulase and xylanase. Applied Biochemistry and Biotechnology. 164 (6): 819-830. https://doi.org/10.1007/s12010-011-9176-4

Song, H. T., Gao, Y., Yang, Y. M., Xiao, W. J., Liu, S. H., Xia, W. C., Jiang, Z. B. (2016). Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresource Technology. 219: 710-715. https://doi.org/10.1016/j.biortech.2016.08.035

Steiner, J., Procopio, S., & Becker, T. (2015). Brewer’s spent grain: source of value-added polysaccharides for the food industry in reference to the health claims. European Food Research and Technology. 241 (3): 303-315. https://doi.org/10.1007/s00217-015-2461-7

Swart, L. J., Petersen, A. M., Bedzo, O. K. K., & Görgens, J. F. (2021). Techno-economic analysis of the valorization of brewers spent grains: production of xylitol and xylo-oligosaccharides. Journal of Chemical Technology and Biotechnology. 96 (6): 1632-1644. https://doi.org/10.1002/jctb.6683

Terrasan, César R.F., Temer, B., Sarto, C., Silva Júnior, F. G., & Carmona, E. C. (2013). Xylanase and β-Xylosidase from Penicillium janczewskii: Production, Physico-Chemical properties, and application of the crude extract to pulp biobleaching. BioResources. 8 (1): 1292-1305. https://doi.org/10.15376/biores.8.1.1292-1305

Terrasan, César R,F., Guisan, J. M., & Carmona, E. C. (2016). Xylanase and β-xylosidase from Penicillium janczewskii: Purification, characterization and hydrolysis of substrates. Electronic Journal of Biotechnology. 23: 54-62. https://doi.org/10.1016/j.ejbt.2016.08.001

Terrasan, César R.F., Temer, B., Duarte, M. C. T., & Carmona, E. C. (2010). Production of xylanolytic enzymes by Penicillium janczewskii. Bioresource Technology. 101 (11): 4139-4143. https://doi.org/10.1016/j.biortech.2010.01.011

Terrone, C. C., Freitas, C. de, Terrasan, C. R. F., Almeida, A. F. de, & Carmona, E. C. (2018). Agroindustrial biomass for xylanase production by Penicillium chrysogenum: Purification, biochemical properties and hydrolysis of hemicelluloses. Electronic Journal of Biotechnology. 33: 39-45. https://doi.org/10.1016/j.ejbt.2018.04.001

Valášková, V., & Baldrian, P. (2006). Estimation of bound and free fractions of lignocellulosedegrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus. Research in Microbiology. 157: 119-124. https://doi.org/10.1016/j.resmic.2005.06.004

Wang, H., Tao, Y., Temudo, M., Bijl, H., Kloek, J., Ren, N., de Kreuk, M. (2015). Biomethanation from enzymatically hydrolyzed brewer’s spent grain: Impact of rapid increase in loadings. Bioresource Technology. 190: 167-174. https://doi.org/10.1016/j.biortech.2015.04.073

Xiros, C., Katapodis, P., & Christakopoulos, P. (2011). Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresource Technology. 102 (2): 1688-1696. https://doi.org/10.1016/j.biortech.2010.09.108

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales