Evaluación de la comunidad desnitrificante nosZ en la columna de agua de Isla del Sol, embalse de Prado, Tolima

Cómo citar

Castro-González, M. (2014). Evaluación de la comunidad desnitrificante nosZ en la columna de agua de Isla del Sol, embalse de Prado, Tolima. RACCEFYN, 38(149), 385–392. https://doi.org/10.18257/raccefyn.134


Los datos de descargas todavía no están disponibles.

Métricas Alternativas


En este trabajo se evaluó la diversidad genética de las comunidades desnitrificantes relacionadas con el reciclaje del gas invernadero óxido nitroso (N2 O) en la columna de agua de Isla del Sol, en el embalse de Prado, mediante el análisis del polimorfismo de los fragmentos de restricción terminal del gen funcional nosZ, que codifica para la reducción de N2 O a N2  durante la desnitrificación. Este es el primer reporte que demuestra la presencia de microorganismos desnitrificantes tipo nosZ en un ecosistema acuático colombiano. Los resultados indicaron que la digestión con la enzima MspI generó un mejor perfil de la comunidad nosZ (expresado en una mayor riqueza de fragmentos de restricción terminal, FRT), que el obtenido con la enzima HhaI. Además, la comunidad de tipo nosZ presentó mayor riqueza y diversidad (índice de Shannon – H′=0,9) de FRT en la profundidad (9m) a la cual se encontraron condiciones subóxicas (1,1 mg/l de O2 ) y altos niveles de nitrato (0,78 mg/l), lo cual podría favorecer la reducción de N2 O a N2. Estos resultados son la base para el desarrollo de investigaciones futuras que permitan establecer la funcionalidad y significancia de estas comunidades en la regulación de las emisiones de N2 O desde esta hidroeléctrica. © 2014. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.


Abell, G.C.J, Revill, A.T., Smith, C., Bissett, A.P., Volkman, J.K., Stanley, S.R. 2010. Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME Journal 4: 286-300.

APHA. 1999. Standard methods for the examination of water and wastewater. Twentieth edition. Baltimore, Maryland. 1220 pp.

Bai, Y., Shi, Q., Wen, D., Li, Z., Jefferson, W.A., Feng, Ch., Tang, X. 2012. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic water body in China. PLoS ONE 7 (5): e37796.

Baxter, A.M., Johnson, L., Royer, T., Leff, L.G. 2013. Spatial differences in denitrification and bacterial community structure of streams: Relationships with environmental conditions. Aquatic Science 75: 275-284.

Baxter, A.M., Johnson, L., Edgerton, J., Royer, T., Left, L.G. 2012. Structure and function of denitrifying bacterial assem-blages in low-order Indiana streams. Freshwater Science 31 (2): 304-317.

Beaulieu, J.J., Smolensky, R.L., Nietch, C.T., Townsend-Small, A., Elovitz, M.S., Schubauer-Berigan, J.P. 2014. Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir. Limnology and Oceanography 59 (2): 495-506.

Bowen, J.L., Bymes, J.E.K., Wisman, D., Colaneri, C. 2013. Functional gene pyrosequencing and network analysis: An approach to examine the response of denitrifying bacteria to increase nitrogen supply in salt marsh sediments. Frontiers in Microbiology 4: 1-12.

Braker, G. & Conrad, R. 2011. Diversity, structure, and size of N2O producing microbial communities in soils. What matters for their functioning? Advances in Applied Microbiology 75: 33-70.

Brettar, I. & Höfle, M.G. 1993. Nitrous oxide producing hetero-trophic bacteria from the water column of the central Baltic: Abundance and molecular identification. Marine Ecology Progress Series 94: 253-265.

Canosa, A. & Pinilla, G. 2007. Relaciones entre las abundancias del bacterioplancton y del fitoplancton en tres ecosistemas lenticos de los Andes Colombianos. Revista de Biología Tropical 55 (1): 135-146.

Castro-González, M. & Torres-Valdés, V. (2014). Microbial process involved in the distribution and N2O cycling in the water column in a tropical hydroelectric reservoir, south east Colombia. 15th International Symposium on Microbial Ecology. ISME-Microbes.org.

Seoul, South Korea.

Castro-González, M., Braker, G., Farías, L., Ulloa, O. 2005. Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific. Environmental Microbiology 7 (9): 1298-1306.

Deemer, B.R., Harrison, J.A., & Whitling, E.W. 2011. Microbial dinitrogen and nitrous oxide production in a small eutrophic reservoir: An in situ approach to quantifying hypolimnetic process rates. Limnology and oceanography 56 (4): 1189-1199.

Dong, L.F., Smith, C.J., Papaspyrou, S., Stott, A., Osborn, A.M., Nedwell, D.B. 2009. Changes in benthic denitrification, nitrate ammonification and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (The Colne Estuary, United Kingdom). Applied and Environmental Microbiology 75 (10): 3171-3179.

Dunbar, J., Ticknor, L.O. & Kuske, C.H.R. 2001. Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology 67 (1): 190-197.

Egert, M. & Friedrich M.W. 2003. Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of micro-bial community structure. Applied and Environmental Microbiology 69 (5): 2555-2562.

Eiler, A., Heinrich, F. & Bertilsson, S. 2012. Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal 6: 330-342.

Fortunato, C.S., Carlini, D.B., Ewers, E., Bushaw-Newton, K.L. 2009. Nitrifier and denitrifier molecular operational taxonomic unit compositions from sites of a freshwater estuary of Chesapeake Bay. Canadian Journal of Micro-biology 55: 333-346.

Ganesh, S., Parris, D.J., Delong, E.F., Stewart, F.J. 2013. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. The ISME Journal1: 1-25.

Goldenfum, J.A. 2012. Challenges and solutions for assessing the impact of freshwater reservoir on natural GHG emissions. Ecohydrology and Hydrobiology 12 (2): 115-122.

Hallin, S., Braker, G. & Philippot L. 2007. Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats. In: Biology of the nitrogen cycle. Edited by H. Bothe, SJ Ferguson and WE Newton. Elsevier BV. 40 p.

Harrison, J.A., Maranger, R.J., Alexander, R.B., Giblin, A.E., Jacinthe, P-A., Mayorga, E., Seitzinger, S.P., Sobota, D.J., Wollheim, W.M. 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93: 143-157.

Hulth, S., Allerb, R.C., Canfield, D.E., Dalsgaard, T., Engstrom, P., Gilberte, F., Sundback, K., Thamdrup, B.O. 2005. Nitrogen removal in marine environments:Recent findings and future research challenges. Marine Chemistry 94: 125–145.

Jones, C.M., Stres, B., Rosenquist, M., Hallin, S. 2008. Phylo-genetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology and Evolution 25: 1955-1966.

Jones, C.M., Graf, D.R.H., Bru. D., Philippot, L., Hallin, S.2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. The ISME Journal 7: 417-426.

Kloos, K., Mergel, A., Rosch, C., Bothe, H. 2001. Denitrification within the genus Azospirillum and other associative bacteria. Australian Journal Plant Physiology 28: 991-998.

Mc Aleece, N. 1997. BioDiversity Professional Beta 2.0. The Natural History Museum.Magalhaes, C., Bano, N., Wiebe, W.J., Bordalo, A.A., Hollibaugh, J.T. 2008. Dynamics of nitrous oxide reductase genes (nosZ) in intertidal rocky biofilms and sediments of the Duoro River estuary (Portugal), and their relation to N-biogeochemistry. Microbial Ecology 55: 259-269.

Márquez, G. & Guillot, G. 1988. Proyecto estudios ecológicos de embalses colombianos. Etapa Prospectiva, Informe Final, Fondo FEN. Universidad Nacional de Colombia. Bogotá, Colombia, 242 p.Naqvi, S.W.A., Bange, H.W., Farías, L., Monteiro, P.M.S., Scranton, M.I., Zhang, J. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7: 2159–2190

Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V., Naik, H., Sarma, V.V.S.S., D’Souza, W., Joseph, S., George, M.D. 2000. Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408: 346-349.

Palmer, K., Biasi, C. & Horn, M.A. 2012. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in Arctic tundra. The ISME Journal 6: 1058-1077.

Penton, C.R., Devol, A.H., Tiedje, J.M. 2006. Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and environmental microbiology 72 (10): 6829-6832.

Qian, P.Y., Wang, Y., Lee, O.O., Lau, S.C.K., Yang, J., Lafi, F.F.2011. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. The ISME Journal 5: 507-518.

Rudd, J.W.M., Harris, R., Kelly, C.A., Hecky, R.E. 1993. Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22: 246–248.

Rusch, A. 2013. Molecular tools for the detection of nitrogen cycling Archaea. Archaea. Article ID 676450, 10 pages. doi:10.1155/2013/676450.

Seitzinger, S., Harrison, J.A., Böhlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., Van Dreche, G.2006. Denitrification across landscapes and waterscapes: A synthesis. Ecology Applied 16: 2064-2090.

Schubert, C.J., Durish-Kaiser, E., Wehrli, B., Thamdrup, B., Lam, P., Kuypers, M.M.M. 2006. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology 8: 1857-1863.

Sodeic Ltda. 1993. Plan de manejo de la cuenca del río Prado. Informe Final de Consultoría. 3 Tomos.St Louis, V., Kelly, L.C.A., Duchemin, E., Rudd, J.W.M., Rosenberg, D.M. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. BioScience 50: 766-775.

Taipale, S., Jones, R.I. & Tiirola, M. 2009. Vertical diversity of bacteria in an oxygen-stratified humic lake, evaluated using DNA and phospholipid analyses. Aquatic Microbial Ecology 55: 1-16.

Throbäck, I.N., Enwall, K., Jarvis, A., Hallin, S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZgenes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology and Ecology 49: 401-417.

Wang, S., Dong, R.M., Dong, C.Z., Huang, L., Jiang, H., Wei, Y., Feng, L., Liu, D., Yang, G., Zhang, Ch., Dong, H. 2012. Diversity of microbial plankton across the Three Gorges dam of the Yangtze River, China. Geoscience Frontiers 3 (3): 335-349.

Wang, C., Zhu, G., Wang, Y., Wang, S., Yin, Ch. 2012a. Nitrous oxide reductase gene (nosZ) and N2O reduction along the littoral gradient of a eutrophic freshwater lake. Journal of Environmental Sciences 25 (1): 44-52.

Wen, D.H., Bai, Y.H., Shi, Q., Li, Z.X., Sun, Q.H., Sun, R.H., Feng, C.P., Tang, X.Y. 2012. Bacterial diversity in the polluted water of the Dianchi Lakeshore in China. Annals of Microbiology 62 (2): 715-723.

Wenk, C.B., Blees, J., Zopfi, J., Veronesi, M., Bourbonnais, A., Schubert, C.J., Niemann, H., Lehmann, M.F. 2013.Anaerobic ammonium oxidation (anammox) bacteria and sulfide-dependent denitrifies coexist in the water column of a meromictic south-alpine lake. Limnology and Oceanography 58 (1): 2013, 1–12.

Zumft, W.G. 1997. Cell Biology and Molecular Basis of Denitri-fication. Microbiology and Molecular Biology Reviews 61 (4): 533–616.

Zumft, W. & Kroneck, P. 2007. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Advances in Microbiology and Physiology 52: 107-227

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.