Resumen
La nicotinamida/nicotinato mononucleótido adenililtransferasa (NMNAT, EC 2.7.7.1/18) desempeña una función central en la síntesis del dinucleótido de adenina y nicotinamida (NAD) debido a que en esta enzima confluyen las rutas de síntesis de novo y de reciclaje. El NAD es una molécula trascendental en el metabolismo de todos los seres vivos, principalmente en el metabolismo redox. En este estudio se presenta una nueva estrategia metodológica para la evaluación de posibles inhibidores de la NMNAT de Leishmania braziliensis (LbNMNAT). El método suprime la actividad inhibitoria cruzada con la enzima acoplada al ensayo de detección, la alcohol dehidrogenasa (ADH, EC 1.1.1.1). Experimentalmente se introdujo un paso intermedio de extracción en fase sólida de los inhibidores antes de la ejecución del sistema enzimático de detección. La implementación del paso de extracción posibilitó la evaluación específica de la enzima de interés, la LbNMNAT, sin afectar la enzima acoplada ADH. El nuevo método permitió estudiar el efecto inhibitorio de la galotanina, producto natural de especies del género Rhus (Rhus chinensis), en la actividad de la LbNMNAT.
Palabras clave
Citas
Acker, M. G. & Auld, D. S. (2014). Considerations for the design and reporting of enzyme assays in high-throughput screening applications. Perspectives in Science. 1 (1): 56-73. Doi: 10.1016/j.pisc.2013.12.001
Balducci, E., Emanuelli, M., Raffaelli, N., Ruggieri, S., Amici, A., Magni, G., Natalini, P. (1995). Assay Methods for Nicotinamide Mononucleotide Adenylyltransferase of Wide Applicability. Anal Biochem. 228 (1): 64-68. Doi:10.1006/abio.1995.1315
Berger, F., Ramı́rez-Hernández, M. a. H., Ziegler, M. (2004). The new life of a centenarian: signalling functions of NAD(P). Trends in Biochemical Sciences. 29 (3): 111-118. Doi: 10.1016/j.tibs.2004.01.007
Cantó, C., & Auwerx, J. (2011). NAD+ as a signaling molecule modulating metabolism. Cold Spring Harbor symposia on quantitative biology. 76: 291-298. doi: 10.1101/sqb.2012.76.010439
Contreras, L. E., Neme, R., Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis nicotinamide mononucleotide adenylyltransferase. Protein Expression and Purification. 115: 26-33. doi: 10.1016/j.pep.2015.08.022
Chiarugi, A., Dölle, C., Felici, R., Ziegler, M. (2012). The NAD metabolome--a key determinant of cancer cell biology. Nat Rev Cancer. 12 (11): 741-752. doi: 10.1038/nrc3340
Dolle, C., Skoge, R. H., Vanlinden, M. R., Ziegler, M. (2013). NAD biosynthesis in humans--enzymes, metabolites and therapeutic aspects. Curr Top Med Chem. 13 (23): 2907-2917.
Genomics, B. C. f. C. (2012). Summary assay for small molecule inhibitors of NadD, of hypothetical protein SA1422 (Staphylococcus aureus subsp. aureus N315]) from PubChem Database.https://pubchem.ncbi.nlm.nih.gov/bioassay/602419#section=Protocol
Gillespie, P. M., Beaumier, C. M., Strych, U., Hayward, T., Hotez, P. J., & Bottazzi, M. E.(2016). Status of vaccine research and development of vaccines for leishmaniasis. Vaccine. 34 (26): 2992-2995. doi: 10.1016/j.vaccine.2015.12.071
Haubrich, B. A., Ramesha, C., Swinney, D. C. (2020). Development of a Bioluminescent High-Throughput Screening Assay for Nicotinamide Mononucleotide Adenylyltransferase(NMNAT). SLAS Discov. 25 (1): 33-42. doi: 10.1177/2472555219879644
Katsyuba, E., Romani, M., Hofer, D., Auwerx, J. (2020). NAD(+) homeostasis in health and disease. 2 (1): 9-31. doi: 10.1038/s42255-019-0161-5
Mao, X. R., Kaufman, D. M., Crowder, C. M. (2016). Nicotinamide mononucleotide adenylyltransferase promotes hypoxic survival by activating the mitochondrial unfolded protein response. Cell Death Dis. 7: e2113. doi: 10.1038/cddis.2016.5
Padiadpu, J., Mishra, M., Sharma, E., Mala, U., Somasundaram, K., Chandra, N. (2016). Probing the Druggability Limits for Enzymes of the NAD Biosynthetic Network in Glioma. J Chem Inf Model. 56 (5): 843-853. doi: 10.1021/acs.jcim.5b00733
Petrelli, R., Felczak, K., Cappellacci, L. (2011). NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Curr Med Chem. 18 (13): 1973-1992. doi: 10.2174/092986711795590048
Rodionova, I. A., Zuccola, H. J., Sorci, L., Aleshin, A. E., Kazanov, M. D., Ma, C.-T., Osterman, A. L. (2015). Mycobacterial Nicotinate Mononucleotide Adenylyltransferase: Structure, Mechanism, And Implications For Drug Discovery. The Journal of Biological Chemistry. 290 (12): 7693-7706. doi: 10.1074/jbc.M114.628016
Sauve, A. A. (2008). NAD+ and Vitamin B3: From Metabolism to Therapies. Journal of Pharmacology and Experimental Therapeutics. 324 (3): 883-893. doi: 10.1124/jpet.107.120758
Singhal, A. & Cheng, C. Y. (2019). Host NAD+ metabolism and infections: therapeutic implications.Int Immunol. 31 (2): 59-67. doi: 10.1093/intimm/dxy068
Sorci, L., Pan, Y., Eyobo, Y., Rodionova, I., Huang, N., Kurnasov, O., Osterman, A. L. (2009).Targeting NAD biosynthesis in bacterial pathogens. Structure-based development of inhibitors of nicotinate mononucleotide adenylyltransferase NadD. Chemistry & biology. 16(8): 849-861. doi: 10.1016/j.chembiol.2009.07.006
Thorne, N., Auld, D. S., Inglese, J. (2010). Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol. 14 (3): 315-324. doi:10.1016/j.cbpa.2010.03.020
World Health Organization-WHO. (2017). Neglected tropical diseases. Fecha de consulta: 4 de mayo de 2021. Disponible en: http://www.who.int/neglected_diseases/en/
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales