Uso prospectivo de subproductos de frutas en Colombia según su capacidad antioxidante
PDF (English)

Palabras clave

Capacidad antioxidante Biorrefinería Flavonoides Economía verde

Cómo citar

Flórez-Montes, C., Mosquera-Martínez, Óscar M., & Rojas-González, A. F. (2020). Uso prospectivo de subproductos de frutas en Colombia según su capacidad antioxidante. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat., 44(173), 1113-1125. https://doi.org/10.18257/raccefyn.1241

Descargas

La descarga de datos todavía no está disponible.
Crossref
Citas en Scopus
Perfil en Google Scholar
Citado por:

Métricas Alternativas

Resumen

Hoy en día el aprovechamiento de residuos agroindustriales representa una alternativa viable para la obtención de compuestos valiosos, lo que en el caso de las biorrefinerías representa una oportunidad para mejorar. En ese contexto el objetivo de este estudio fue determinar el contenido de flavonoides y la capacidad antioxidante de 30 subproductos del procesamiento de frutas en Colombia, con el fin de proponer un posible uso. La capacidad antioxidante de los extractos etanólicos de cada subproducto se analizó mediante las pruebas FRAP, RPAA y ORAC. Se encontró que las cáscaras de tomate de árbol y durazno, y el vástago del tomate de árbol mostraban un alto contenido de flavonoides, con valores superiores a 8.271,82 μg de quercetina por gramo de muestra seca. También se encontró que las cáscaras de mango (22.676,57 ± 759,71 μg ET1/g Mbs, 3.692,38 ± 92,67 μg EAG/g Mbs), guanábana (22.117,13 ± 754,94 μg ET1/g Mbs, 4.858,79 ± 156,71 μg EAG/g Mbs, 14.713,39 ± 757,95 μg ET2/g Mbs), uva (17.027,85 ± 765,11 μg ET1/g Mbs, 13.395,15 ± 659,31 μg ET2/g Mbs) y durazno (17.910,21 ± 1.424,33 μg ET2/g Mbs), y las semillas (4.316,46 ± 112,00 μg EAG/g Mbs, 20.093,32 ± 1.317,93 μg ET2/g Mbs) y el escobajo de la uva (3.552,26 ± 31,63 μg EAG/g Mbs) mostraron una alta capacidad antioxidante en las diferentes pruebas realizadas. Los resultados de este estudio demuestran que los subproductos de frutas tienen un uso potencial en la industria farmacéutica, alimentaria y cosmética por su contenido de flavonoides y su alta capacidad antioxidante.

https://doi.org/10.18257/raccefyn.1241
PDF (English)

Referencias

Abhijit, S., Tripathi, S. J., Bhagya, V., Rao, S., Subramanyam, M. V., Devi, S. A. (2018). Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronalnumber in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Experimental Gerontology. 101: 101-112. Doi:10.1016/j.exger.2017.11.012

Abril, A. J. & Navarro, E. A. (2012). Etanol a partir de biomasa lignocelulósica. Andalucía, Spain: Aleta Ediciones. p. 102.

Aguilar-Hernández, G., García-Magaña, M. L., Vivar-Vera, M. A., Sayago-Ayerdi, S. G., Sánchez-Burgos, J. A., Morales-Castro, J., Anaya-Esparza, L. M., Montalto, E. (2019).

Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricate. By-Products and Pulp. Molecules. 904 (24): 1-15. Doi: 10.3390/molecules24050904

Ainsworth, E.A. & Gillespie, K.M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature protocols. 2 (4): 875-877. Doi: 10.1038/nprot.2007.102

Ajila, C. M., Naidu, K. A., Bhat, S. G., Prasada, U. J. S. (2007). Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry. 105: 982-988. Doi: 10.1016/j.foodchem.2007.04.052

Akomalafe, S. F. & Ajayi, O. B. (2015). A comparative study on antioxidant properties, proximate and mineral compositions of the peel and pulp of ripe Annona muricata (L.) fruit. International Food Research Journal. 22 (6): 2381-2388.

Alabri, T. H. A., Musalami, A. H. S. A., Hossain, M. A., Weli, A. M., Al-Riyami, Q. (2014). Comparative study of phytochemical screening, antioxidant and antimicrobial capacities of fresh and dry leaves crude plant extracts of Datura metel L. Journal of King Saud University – Science. 26: 237-243. Doi: 10.1016/j.jksus.2013.07.002

Aquilani, C., Sirtori, F., Flores, M., Bozzi, R., Lebret, B., Pugliese, C. (2018). Effect of natural antioxidants from grape seed and chestnut in combination with hydroxytyrosol, as sodium nitrite substitutes in Cinta senese dry-fermented sausages. Meat Science. 145: 389-398. Doi:10.1016/j.meatsci.2018.07.019

Ballester, J. (2016). Hidrólisis de proteínas sarcoplásmicas y generación de péptidos bioactivos durante la elaboración de jamón curado. Master’s thesis of Science and Food Engineering, Valencia: Universitat Politécnica de Valencia.

Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F, Arora, A. (2018). A hydrocolloid based biorefinery approach to the valorization of mango peel waste. Food Hydrocolloids. 77: 142-151. Doi: 10.1016/j.foodhyd.2017.09.029

Benzie, I. F. F. & Devaki, M. (2018). The ferric reducing/antioxidant power (FRAP) assay for non‐enzymatic antioxidant capacity: concepts, procedures, limitations and applications. In R. Apak, E. Capanoglu, F. Shahidi (Ed.), Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications (pp. 77-106). New Jersey, United States: John Wiley & Sons Ltd. Doi: 10.1002/9781119135388

Bosco, F., Casale, A., Gribaudo, G., Mollea, C., Malucelli, G. (2017). Nucleic acids from agroindustrial wastes: A green recovery method for fire retardant applications. Industrial Crops and Products. 108: 208-218. Doi: 10.1016/j.indcrop.2017.06.035

Cardona, C. A., Orrego, C. E., Tamayo, J. A. (2012). ARCANO, una oportunidad para el desarrollo de la agroindustria en el departamento de Caldas. Manizales, Colombia: Universidad Nacional de Colombia, Sede Manizales. p. 139

Carullo, G., Badolato, M., Aiello, F. (2018). Bioavailability and biochemistry of quercetin and applications to health and diseases. In R. Roos, V.R. Preedy, S. Zidabi (Ed.), Polyphenols: Mechanisms of action in human health and disease (pp. 361- 71). Amsterdam, Netherlands:Elsevier Inc. Doi: 10.1016/C2016-0-04277-8

Chen, Z., Bertin, R., Froldi, G. (2015). EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry. 138 (1): 414-20. Doi: 10.1016/j.foodchem.2012.11.001

Díaz, A. L. (2011). Biodegradación de residuos de frutas y vegetales provenientes de supermercados usando la técnica de aireación forzada. Kuxulkab - Revista de divulgación. 17 (33): 4-7. Doi:10.19136/kuxulkab.a17n33.355

Diep, T., Pook, C., Yoo, M. (2020). Phenolic and Anthocyanin Compounds and Antioxidant Activity of Tamarillo (Solanum betaceum Cav.). Antioxidants. 9 (2): 1-20. Doi: 10.3390/antiox9020169

Ferreyra, S. G., Antoniolli, A., Borrini, R., Fontana, A. (2020). Bioactive compounds and total antioxidant capacity of cane residues from different grape varieties. Journal of the Science of Food and Agriculture. 100 (1): 376-383. Doi: 10.1002/jsfa.10065

Ghosh, S., Kumar, J., Kumar, A. (2019). Comparative evaluation of in vitro antioxidant activities and high‑performance liquid chromatography fingerprinting of fruit peels collected from food processing industry wastes. Pharmacognosy Research. 11 (4): 346-351.

Grupta, D. (2015). Methods for determination of antioxidant capacity: a review. International Journal of Pharmaceutical Sciences and Research. 6 (2): 546-566. Doi: 10.13040/IJPSR.0975-8232.6(2).546-66

Helkar, P. B., Sahoo, A. K., Patil, N. J. (2016). Review: Food industry by-products used as a functional food ingredients. International Journal of Waste Resources. 6 (3):1-6. Doi:10.4172/2252-5211.1000248

Kim, D. O., Jeong, S. W., Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. 81 (3): 321-6. Doi: 10.1016/S0308-8146(02)00423-5

Kiss, A. A., Lange, J. P., Schuur, B., Brilman, D. W. F., van der Ham, A. G. J., Kersten, S. R. A. (2016). Separation technology–Making a difference in biorefineries. Biomass and Bioenergy.95: 296-309. Doi: 10.1016/j.biombioe.2016.05.021

Kumar, K., Yadav, A. N., Kumar, V., Vyas, P., Dhaliwal, S. (2017). Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresources and Bioprocessing. 4 (18): 1-14. Doi: 10.1186/s40643-017-0148-6

Lesjak, M., Beara, I., Simin, N., Pintac, D., Majkic, T., Bekvalac, K., Orcic, D., Mimica-Dukic, N. (2018). Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods. 40: 68-75. Doi: 10.1016/j.jff.2017.10.047

Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M. T., Wang, S., Liu, H., Yin, Y. (2016). Quercetin, inflammation and immunity. Nutrients. 167 (8): 1-14. Doi: 10.3390/nu8030167

López, A. (2017). Caracterización de compuestos bioactivos en productos y subproductos vegetales mediante técnicas cromatográficas acopladas a espectrometría de masa. Doctoral thesis of Chemistry, Granada: Universidad de Granda.

Lucarini, M., Durazzo, A., Romani, A., Campo, M., Lombardi-Boccia, G., Cecchini, F. (2018). Bio-based compounds from grape seeds: A biorefinery approach. Molecules. 23 (8): 1-12.Doi: 10.3390/molecules23081888

Mahato, N., Sinha, M., Sharma, K., Koteswararao, R., Cho, M.H. (2019). Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods. 8 (11): 1-81. Doi: 10.3390/foods8110523

Martínez, M. M. & Quintero, J. C. (2017). Estado actual de los desperdicios de frutas y verduras en Colombia. In 4to Congreso Internacional AmITIC 2017 (pp. 194-201). Popayán.

Mosquera, O. M., González, L. M., Cortes, Y. J., Camargo, J. C. (2015). Caracterización fitoquímica, determinación del contenido de lignina y la actividad antioxidante de los culmos de Guadua angustifolia KUNTH. Revista Facultad de Ciencias Básicas – Universidad Militar Nueva Granada. 11 (2): 124-135. Doi: 10.18359/rfcb.1301

Ou, B., Hampsch-woodill, M., Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry. 49: 4619-4626. Doi: 10.1021/jf010586o

Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., Shin, H. S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry. 115: 889-904. Doi: 10.1016/j.ejmech.2018.06.053

Patiño, P. E. (2014). Biomasa residual vegetal: tecnologías de transformación y estado actual. Innovaciencia. 2 (1): 45-52.

Peñaranda, L. V., Montenegro, S. P., Giraldo, P. A. (2017). Aprovechamiento de residuos agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8 (2): 141-150. Doi: 10.22490/21456453.2040

Prior., R. L. (2015). Oxygen radical absorbance capacity (ORAC): New horizons in relating dietary antioxidants/bioactives and health benefits. Journal of Functional Foods. 18: 797-810. Doi: 10.1016/j.jff.2014.12.018

Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., Struck, S., Kantogiorgos, V. (2015). Adding value to fruit processing waste: innovative ways to incorporate fibers from berry pomace in baked and extruded cereal-based foods—A SUSFOOD Project. Foods. 4: 690-697. Doi: 10.3390/foods4040690

Ruales, A. V. (2015). Evaluación del potencial energético y bioactivo de los residuos generados por la producción y transformación de la uva. (Tesis de Maestría). Departamento de Ingeniería Química, Universidad Nacional de Colombia, Sede Manizales, Manizales.

Ruiz-Torralba, A., Guerra-Hernández, E. J., García-Villanova, B. (2018). Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTAJournal of Food. 16 (1): 1131-1138. Doi: 10.1080/19476337.2018.1517828

Saleem, M., Tanvir, M., Akhtar, M. F., Iqbal, M., Saleem, A. (2019). Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes. Medicina. 353 (55): 1-9. Doi: 10.3390/medicina55070353

Schaich, K. M., Tian, X., Xie, J. (2015). Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. Journal of functional foods. 14:111-125.

Singh, D. S., Siddiq, M., Greiby, I., Dolan, K. D. (2013). Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chemistry. 141: 2649-2655. Doi: 10.1016/j.foodchem.2013.05.053

Suleria, H. A. R., Barrow, C. J., Dunshea, F. R. (2020). Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods. 9 (9): 1-26. Doi: 10.3390/foods9091206

Tafur, R., Toro, J. C., González, H., García, R., Reyes, E., Bolaños, A., Méndez, A. (2006). Diagnóstico y análisis de los recursos para la fruticultura en Colombia. Cali: Ministerio de Agricultura y Desarrollo Rural. p. 88.

Valenzuela, P. D. (2015). Evaluación de la actividad antioxidante y determinación del contenido de fenoles totales y flavonoides de hojas de diferentes genotipos de Ugni molinae turcz. Thesis of Pharmaceutical chemist, Santiago de Chile: Universidad de Chile.

Vargas, Y. A. & Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas. 14 (1): 1-14.

Viganó, J., de Paula Assis, B. F., Náthia-Neves, G., dos Santos, P., A. Meireles, M. A., Carvalho, P., Martínez, J. (2020). Extraction of bioactive compounds from defatted passion fruit bagasse (Passiflora edulis sp.) applying pressurized liquids assisted by ultrasound. Ultrasonics – Sonochemistry. 64: 1-8. Doi: 10.1016/j.ultsonch.2020.104999

Yadav, K., Kumar, R., Mandal, S., Saha, P., Mann, B. (2018). Evaluation of total phenol content and antioxidant properties of encapsulated grape seed extract in yoghurt. International Journal of Dairy Technology. 71 (1): 96-104. Doi: 10.1111/1471-0307.12464

Zeinab, M. H., Osheba, A. S., Khallaf, M. F., Abdel, A. A. (2019). Assessment of grape seeds as a source of antioxidant compounds. AUJAS. 27 (1): 501-509.

Creative Commons License

Esta obra está bajo licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Derechos de autor 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales