Caracterización de parámetros del rayo en Colombia con base en sistemas de localización terrestres y satelitales, 20 años de análisis
PDF

Cómo citar

Younes-Velosa, C. . (2020). Caracterización de parámetros del rayo en Colombia con base en sistemas de localización terrestres y satelitales, 20 años de análisis. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(173), 960–973. https://doi.org/10.18257/raccefyn.1171

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.

Métricas Alternativas


Dimensions

Resumen

Se presenta una revisión de los avances en la investigación en torno a los parámetros del rayo en Colombia en los últimos 20 años a partir del uso de bases de datos de sistemas de localización de rayos terrestres y satelitales que han permitido caracterizar el fenómeno de manera adecuada en un país como Colombia cuyos niveles de actividad eléctrica atmosférica y características geográficas y orográficas, además del hecho de estar ubicado en zona tropical, lo convierten en un caso especial que exige su comprensión con base en la hipótesis de la variación espacial y temporal de los parámetros del rayo planteada hace tres décadas. En el estudio se presentan los resultados relacionados con los siguientes parámetros del rayo: densidad de descargas a tierra, nivel ceráunico, polaridad y multiplicidad, así como el análisis de los efectos de las irregularidades del terreno en la propagación de las ondas electromagnéticas radiadas por la descarga de retorno y la forma en que las actividades antropogénicas, especialmente la emisión de material en partículas, inciden en la electrificación atmosférica.

https://doi.org/10.18257/raccefyn.1171

Palabras clave

Parámetros del rayo | Sistemas de localización de rayos | Descargas eléctricas atmosféricas
PDF

Citas

Abarca, S. F., Corbosiero, K. L., Galarneau Jr, T. J. (2010). An evaluation of the worldwideb lightning location network (WWLLN) using the national lightning detection network (NLDN) as ground truth. Journal of Geophysical Research: Atmospheres. 115 (D18): 1-11.

Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., Christian, H. J. (2016). Where are the lightning hotspots on Earth? Bulletin of the American Meteorological Society. 97(11): 2051-2068.

Aranguren, D., López, J., Inampués, J.C., Torres, H., Betz, H. (2016). Cloud-to-ground lightning activity in Colombia and the influence of topography. Journal of Atmospheric and SolarTerrestrial Physics. 154: 182-189.

Boccipio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. Baker, R. Boldi. (1995). Sprites, ELF transients and positive ground strokes, Science. 269: 1088.

Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Goodman, S. J. (2000). The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. Journal of Atmospheric and Oceanic Technology. 17 (4): 441-458.

Boccippio, D. J., Koshak, W.J., Blakeslee, R.J. (2002) Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability. Journal of Atmospheric & Oceanic Technology. 19.2: 1318.

Cecil, D. J., Buechler, D. E., Blakeslee, R. J. (2014). Gridded lightning climatology from TRMMLIS and OTD: Dataset description. Atmospheric Research. 135: 404-414.

Cruz-Bernal, A. S., Torres-Sánchez, H., Aranguren-Fino, H., Inampués-Borda, J. C. (2018). Lightning mortality rate in Colombia for the period 1997–2014. Revista UIS Ingenierías. 17(2): 65-74.

Departamento Administrativo Nacional de Estadística (DANE). (2018). Censo Nacional de Población y Vivienda 2018–Colombia. Fecha de consulta: 22 de septiembre de 2020. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos

Del Rio-Trujillo, D., Younes-Velosa, C., Pulgarín-Rivera, J. (2017). Lightning activity over large cities located in mountainous tropical zones and its relationship with particulate matter PM10 distribution-the Bogota City Case. Revista Facultad De Ingenieria-Universidad de Antioquia. 82: 22-30.

Del Río-Trujillo, D. F. (2018) Evaluación del efecto urbano sobre los parámetros del rayo. Caso colombiano (Disertación doctoral, Universidad Nacional de Colombia-Sede Manizales).

Diendorfer, G., Bernardi, M., Cummins, K. L., Del la Rosa, F., Hermoso, B., Hussein, A. M., Torres, H. (2009). Cloud-to-Ground Lightning Parameters Derived from Lightning Location Systems-The Effects of system Performance. Review of CIGRE Report. p. 1-5.

Franklin, B. (1774). Experiments and observations on electricity made at Philadelphia. London. E Cave.

Herrera, J., Younes, C., Porras, L. (2018). Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data. Atmospheric Research. 203: 164-174.

Herrera, J. & Younes, C. (2020). Plataforma experimental para la medición sistemática de parámetros de descargas eléctricas atmosféricas (p. 1-106). Manizales: Universidad Nacional de Colombia. http://www.hermes.unal.edu.co

IEEE. (2011) Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, en IEEE Std 1410-2010 (Revision of IEEE Std 1410-2004). pp.1-73, Doi: 10.1109/IEEESTD.2011.5706451

Karami, H., Mostajabi, A., Azadifar, M., Wang, Z., Rubinstein, M., Rachidi, F. (2019). Locating Lightning Using Electromagnetic Time Reversal: Application of the Minimum Entropy Criterion. In 2019 International Symposium on Lightning Protection (XV SIPDA) (pp. 1-4). IEEE.

Karami, H., Azadifar, M., Mostajabi, A., Rubinstein, M., Rachidi, F. (2019). Numerical and Experimental Validation of Electromagnetic Time Reversal for Geolocation of Lightning Strikes. IEEE Transactions on Electromagnetic Compatibility. 62 (5): 2156-2163. Access date: October 12, 2020, doi: 10.1109/TEMC.2019.2957531.

Koshak, W. J., Cummins, K. L., Buechler, D. E., Vant-Hull, B., Blakeslee, R. J., Williams, E. R., Peterson, H. S. (2015). Variability of CONUS lightning in 2003–12 and associated impacts. Journal of Applied Meteorology and Climatology. 54 (1): 15-41.

Lyons, W. A. & Williams, E. R. (1993). Preliminary investigations of the phenomenology of cloud-to-stratosphere lightning discharges. Conference on atmospheric electricity, St. Louis, Missouri.

Lyons, W. A. (1996). Sprite observations above the US High Plains in relation to their parent thunderstorm systems. Journal of Geophysical Research: Atmospheres. 101 (D23): 29641-29652.

Mostajabi, A., Finney, D. L., Rubinstein, M., Rachidi, F. (2019). Nowcasting lightning occurrence from commonly available meteorological parameters using machine learning techniques. npj Climate and Atmospheric Science. 2 (1): 1-15.

Pérez, E., Espinosa, J., Aranguren, D. (2020). On the development of dynamic stroke density for transmission line for power system operational applications. International Journal of Electrical Power & Energy Systems. 116: 105527.

Pierce, E.T. (1956). Some techniques for locating thunderstorms from a single observing station. In Vistas in Astronomy, ed. A. Beer, vol. 2, pp. 850–5. London and New York: Pergamon Press.

Pinto Jr, O., Pinto, I. R. C. A., Naccarato, K. P. (2007). Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: A review. Atmospheric Research. 84 (3): 189-200.

Pulgarín, J.D. (2020). Propagation of LF and VLF ightning electromagnetic waves: The ground effects. Applications to lightning locating systems in mountainous regions. (Doctoral dissertation, Universidad Nacional de Colombia, Manizales, Colombia).

Rakov, V. A. & Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.

Rakov, V. A. & Huffines, G. R. (2003). Return-stroke multiplicity of negative cloud-to-ground lightning flashes. Journal of Applied Meteorology. 42 (10): 1455-1462.

Rojas, H. E., Santamaría, F., Escobar, O. F., Román, F. J. (2017). Lightning research in Colombia: lightning parameters, protection systems, risk assessment and warning systems. Ingeniería y Desarrollo. 35 (1): 240-261.

Soto, E. & Pérez, E. (2019). Lightning-induced voltages on overhead lines over irregular terrains. Electric Power Systems Research. 176: 105941.

Thomas, R. J., Krehbiel, P. R., Rison, W., Hamlin, T., Boccippio, D. J., Goodman, S. J., Christian, H. J. (2000). Comparison of ground‐based 3‐dimensional lightning mapping observations with satellite‐based LIS observations in Oklahoma. Geophysical research letters. 27 (12):1703-1706.

Torres, H. (1998). Espacio y tiempo en los parámetros del rayo, ensayo sobre una hipótesis de investigación. Trabajo de investigación presentado a la Universidad Nacional de Colombia para promoción a la categoría de Profesor Titular. Bogotá.

Torres, H. (2015). El rayo en el trópico: certezas temporales de investigación sobre el fenómeno del rayo. Universidad Nacional de Colombia, Rectoría. Bogotá. p. 201.

Torres, H., Pérez, E., Younes, C., Aranguren, D., Montaña, J., Herrera, J. (2015). Contribution to lightning parameters study based on some American Tropical Regions observations. IEEE Journal of selected topics in applied earth observations and remote sensing. 8 (8): 4086-4093.

Torres-Sánchez, H. (2017). The interdisciplinarity of lightning. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 41 (159): 174-186.

Van der Velde, O. A., Montanyà, J., López, J. A., Cummer, S. A. (2019). Gigantic jet discharges evolve stepwise through the middle atmosphere. Nature communications. 10 (1): 1-10.

Wilson, C.T.R. (1920). Investigations on lightning discharges and on the electric field of thunderstorms. Phil. Trans. Roy. Soc. A 221: 73-115.

Younes, C., & Torres, H. (2002). Evaluación de parámetros del rayo con mediciones terrestres y satelitales para Colombia. Universidad Nacional de Colombia-Sede Bogotá. p. 173.

Younes, C., Torres, H., Perez, E., Gallego, L., Montana, J., Herrera, J., & Vargas, M. (2003). A comparison between satellital and terrestrial lightning detection systems. In Proceedings of ISH.

Younes, C. & Duarte, O. (2006). Metodologías para la correlación de parámetros del rayo con características geográficas y meteorológicas, caso colombiano (Disertación doctoral, Ph. D., Universidad Nacional de Colombia).

Younes, C., Duarte, O., Pulgarín, J. (2013). A novel fuzzy parameter for ground flash density. Dyna. 80 (182): 41-49.

Younes, C., Torres, H., Pérez, E., Gallego, L., Cajamarca, G., Pavas, A. (2004). Lightning parameters evaluation in the Colombian highest atmospheric activity zone. In Proceedings of ICLP. p. 143.

Zhang, D., Cummins, K. L., Nag, A., Murphy, M., Bitzer, P. (2016). Evaluation of the National Lightning Detection Network Upgrade Using the Lightning Imaging Sensor. In 24th Int. Lightning Detection Conf. & Sixth Int. Lightning Meteor. Conf.

Zhang, D., Cummins, K. L., Bitzer, P., Koshak, W. J. (2019). Evaluation of the performance characteristics of the Lightning Imaging Sensor. Journal of Atmospheric and Oceanic Technology. 36 (6): 1015-1031.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales