El impacto de la deforestación en la erosión de la cuenca del río Magdalena (1980-2010)
PDF

Archivos suplementarios

Figura 1S_Figura 1S. Mapas de coberturas boscosas en la cuenca del Magdalena y en Colombia para los periodos
Figura 2S. Tendencias del transporte de sedimentos del río
Figura 3S. Serie de tiempo de transporte de sedimentos en suspensión

Cómo citar

Restrepo A., J. D. (2015). El impacto de la deforestación en la erosión de la cuenca del río Magdalena (1980-2010). Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 39(151), 250–267. https://doi.org/10.18257/raccefyn.141

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

En la última década, la cuenca del río Magdalena ha experimentado un incremento en las tasas de erosión del orden del 34 %, pasando de 550 t km-2 a-1antes del año 2000 a 710 t km-2 a-1 en el periodo 2000-2010, con un aumento en el transporte total de sedimentos de 44 Mt a-1. El análisis de la variabilidad espacial de la producción de sedimentos indica que el 78 % de la cuenca se encuentra en estado crítico de erosión dada la pérdida de bosques primarios de más del 60 % en el periodo entre 1980 y 2010. Mediante la calibración del modelo BQART para el periodo de 1980 a 2010, que combina variables climáticas, hidrológicas, litológicas, morfométricas y del impacto humano por deforestación, se explicó el 86 % de la variabilidad del transporte de sedimentos en la cuenca. El 9 % del transporte de sedimentos acumulado de las tres últimas décadas se debió a la deforestación; cerca de 160 Mt de sedimentos se han generados por la deforestación entre el 2000 y el 2010. Los indicadores económicos del Magdalena en las seis últimas décadas señalan que las actividades agrícolas fueron la principal causa del cambio en el uso de los suelos y de la pérdida forestal. El deterioro de los suelos de la cuenca requiere de medidas a escala regional, y no solamente de planes de mitigación ante el cambio climático.

https://doi.org/10.18257/raccefyn.141
PDF

Citas

Ahnert, F. 1970. Functional relationships between denudation, relief and uplift in large mid-latitude drainage basins. American Journal of Science 268: 243-263.

Ahnert, F. 1984. Local relief and the height limits of mountain ranges. American Journal of Science. 284: 1035-1055.

Bonachea, J., Viola, M., Bruschi, M.A., Hurtado, L., Forte, L.M., da Silva, M., Etcheverry, R., Cavallotto, J., Marcilene, F., Dantas, O., Lázaro, V., Zuquette, MA., Bezerra, O., Remondo, J., Rivas, V., Gómez-Arozamena, J., Fernández, G., Cendrero, A. 2010. Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Science of the Total Environment. 408: 2674-2695.

Bruijnzeel, L. 1990. Hydrology of moist tropical forest and effects of conversion: a state of the knowledge. UNESCO: 224.

Carmona, A.M., Poveda, G. 2014. Detection of long-term trends in monthly hydro-climatic series of Colombia through Empirical Mode Decomposition. Climate Change. doi 10.1007/s/10584-013-1046-3.

Cendrero, A., Rivas, V., Remondo, J. 2004.Influencia humana sobre los procesos geológicos superficiales; consecuencias ambientales. En Naredo, J,M., Ed., Incidencia de la especie humana sobre la Tierra. Colección Economía y Naturaleza, Fundación César Manrique, Lanzarote.

Cendrero, A., Remondo, J., Bonachea, J., Rivas, V., Soto J.2006. Sensitivity of landscape evolution and geomorphic processes to direct and indirect human influence. Geogr Fis Geodin Quatern. 29: 125-137.Douglas, I. 1967. Man, vegetation and the sediment yield of rivers. Nature. 215: 925-928.

Dunne, T. 1979. Sediment yield and land use in tropical catchments. Journal of Hydrology. 42: 281-300.

EJA-Environmental Justice Atlas. 2014. http://ejatlas.org/.EPI-Environmental Performance Index. 2014. http://epi.yale.edu/epi.Food and Agriculture Organization of the United Nations (FAO). 2010. State of the World’s forests 2009. Food and Agriculture Organization of the United Nations, Report. 117. Ferretti-Gallon, K., Busch, J. 2014. What drives deforestation and what stops it? A meta-analysis of spatially explicit econometric studies. Center for Global Development Working Paper. 361.

Fournier, F. 1960. Climat et erosion: la relation entre l’erosion du sol par l’eau et les précipitations atmosphériques. Presse Universitaire de France. 201.Geist, H.J., Lambin, E.F. 2002. Proximate causes and underlying driving forces of tropical deforestation. Bioscience. 52: 143-150.

GWF-Global Forest Watch. 2014. http://www.globalforestwatch.org/.Harrison, C.G.A. 2000. What factor controls mechanical erosion rates? International Journal in Earth Sciences. 531.Higgitt, D., Lu, X. 2001a. Sediment delivery to the three gorges: 1. Catchment controls. Geomorphology. 41: 143-156.

Higgitt, D., Lu, X. 2001b. Sediment delivery to the three gorges: 2. Local response. Geomorphology. 41: 157-169.Holeman, J.N. 1968. Sediment yield of major rivers of the world. Water Resources Research. 4: 737-747.

Hovius, N. 1998. Controls on sediment supply by large rivers. En: Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks. SEPM (Society of Sedimentary Geology) Special Publication. 59: 3-16.

Hoyos, N., Escobar, J., Restrepo, J.C., Arango, A.M., Ortiz, J.2013. Impact of the 2010–2011 La Niña Phenomenon in Colombia, South America: The human toll of an extreme weather event. Appl. Geogr. 39: 16-25.

Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM. 2011. Memoria técnica de la cuantificación de la deforestación histórica nacional -escalas gruesa y fina. Instituto de Hidrología, Meteorología, y Estudios Ambientales-IDEAM. 91.

Jansson, M.B. 1982. Land erosion by water in different climates. Uppsala, Ungi Rapport 57, Department of Physical Geography, Uppsala University. 151.Jansen, J.M.L., Painter, R.B. 1974. Predicting sediment yield from climate and topography. Journal of Hydrology. 21: 371-380.

Kettner, A., Restrepo, J.D., Syvitski, J.P.M. 2010. Simulating spatial variability of sediment fluxes in an Andean drainage basin, the Magdalena River. Journal of Geology. 118: 363-379.

Kjerfve, B., Wiebe, W., Restrepo, J.D., Kremer, H., Salomons, W. 2002. CariBas – The Caribbean Basins Perspective. En: Kjerfve, B., Kremer, H., Salomons, W., Crossland, J.M. Eds. CariBas – Activities in River Catchments and their Impacts on Coastal Systems in the Caribbean. LOICZ-IGBP Report. 27: 3-28.

Krishnaswamy, J., Halpin, D., Ritcher, D. 2001. Dynamics of sediment discharge in relation to land-use and hydro-climatology in a humid tropical watershed in Costa Rica. Journal of Hydrology. 253: 91-109.

Langbein, W.B., Schumm, S.A. 1958. Yield of sediment in relation to mean annual precipitation. Transactions of the American Geophysical Union. 39: 1076-1084.

Ludwig, W., Probst, J. 1998. River sediment discharge to the oceans: Present controls and global budgets. American Journal of Science. 298: 265-295.

Meybeck, M. 2002. Water quality in river systems. En: Goudie, D., Ed., Environmental Change and Human Society. Oxford University Press.

Milliman, J.D., Syvitski, J.P.M. 1992. Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. Journal of Geology. 100:525-544.

Ohmori, H. 1983. Erosion rates and their relation to vegetation from view point of world-wide distribution. Bulletin of the Department of Geography-University of Tokyo. 15:77-91.

Pinet, P., Souriau, M. 1988. Continental erosion and large-scale relief. Tectonics. 7: 563-582.

Restrepo, J.D., Kjerfve, B. 2000a. Water discharge and sediment load from the western slopes of the Colombian Andes with focus on Rio San Juan. Journal of Geology. 108: 17-33.

Restrepo, J.D., Kjerfve, B. 2000b. Magdalena River: Inter-annual variability (1975-1995) and revised water discharge and sediment load estimates. Journal of Hydrology. 235:137-149.

Restrepo, J.D., Kjerfve, B. 2002. River Discharge, Sediment Load, and Sediment Yield Estimates for the Magdalena River and Other Caribbean Rivers of Colombia: Environmental Implications. En: Kjerfve, B., Kremer, H., Salomons, W., Crossland, J.M., Eds., CariBas - Activities in River Catchments and their Impacts on Coastal Systems in the Caribbean. LOICZ-IGBP Report. 27: 86-97.

Restrepo, J.D. 2005. Los Sedimentos del Río Magdalena: Reflejo de la Crisis Ambiental. Fondo Editorial Universidad EAFIT. 267.

Restrepo, J.C., Restrepo, J.D. 2005. Efectos Naturales y Antrópicos en la Producción de Sedimentos en la Cuenca del Río Magdalena. Revista Academia Colombiana de Ciencias Físicas, Exactas y Naturales. 29: 239-254.

Restrepo, J.D., Syvitski, J.P.M. 2006. Assessing the Effect of Natural Controls and Land Use Change on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia. Ambio: a Journal of the Human Environment. 35: 44-53.

Restrepo, J.D., Kjerfve, B., Restrepo, J.C., Hermelin, M. 2006a. Factors Controlling Sediment Yield from a Major South American Drainage Basin: The Magdalena River, Colombia. Journal of Hydrology. 316: 213-232.

Restrepo, J.D., Zapata, P., Díaz, J.M., Garzón, J., García, C. 2006b. Fluvial Fluxes into the Caribbean Sea and their Impact on Coastal Ecosystems: The Magdalena River, Colombia. Global and Planetary Change. 50: 33-49.

Restrepo, J.D. 2008. Applicability of LOICZ Catchment-Coast Continuum in a Major Caribbean Basin: The Magdalena River, Colombia. Estuarine, Coastal and Shelf Science. 77: 214-229.

Restrepo, J.D., López, S.A., Restrepo, J.C. 2009. Geomorphic factors controlling sediment yield in the Andean rivers of Colombia. Latin American Journal of Sedimentology and Basin Analysis. 16: 79-92.

Restrepo, J. D. 2012. Assessing the effect of sea-level change and human activities on a major delta on the Pacific coast of northern South America: The Patía River. Geomorphology. doi:10.1016/j.geomorph.2012.02.004.Restrepo, J.D., Kettner, A. 2012. Human induced discharge diversion in a tropical delta and its environmental implications: the Patía River, Colombia. Journal of Hydrology. 424: 124-142.

Restrepo, J.D. 2013.The perils of human activity on South American deltas: Lessons from Colombia’s experience with soil erosion. En: Deltas:Landforms, Ecosystems and Human Activities. En Proceedings of HP1, IAHS-IAPSO-IASPEI Assembly, IAHS Publ. 358.

Restrepo, J., Ortíz, J.C., Pierini, J., Schrottke, K., Maza, M., Otero, L., Aguirre, J. 2014. Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology. 509: 266-281.

Revenga, C., Brunner, J., Henninger, N., Kassem, K., Payne, R. 2000. Pilot Analysis of Global Ecosystems: Freshwater Systems. World Resource Institute, 65. http://www.wri.org/wr2000.Rivas, V., Cendrero, A., Hurtado, M., Cabral, M., Giménez, J., Forte, L., del Río, L., Cantú, M., Becker, A. 2006. Geomorphic consequences of urban development and mining activities; an analysis of study areas in Spain and Argentina. Geomorphology. 73: 185-206.

Sánchez-Triana, E., Ahmed, K., Awe, Y. 2007. Prioridades ambientales para la reducción de la pobreza en Colombia: un análisis ambiental del país para Colombia. Informe del Banco Mundial, Direcciones para el desarrollo, medio ambiente y desarrollo sustentable. Report No. 38610: 522.

Syvitski, J. 2003. Supply and flux of sediment along hydrological pathways: Research for the 21st century. Global and Planetary Change. 810: 1-11.

Syvitski, J.P.M., Milliman, J.D. 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology. 115: 1-19.

Syvitski, J.P.M., Kettner, A.J. 2011. Sediment Flux and the Anthropocene. Philosophical Transactions of the Royal Society. 369: 957-975.

Stallard, R. 1988. Weathering and erosion in the humid tropics. En: Lerman, A., Meybeck, M., Eds., Physical and Chemical Weathering in Geochemical Cycles. Kluwer Academic Publishers: p. 225-246.

Summerfield, M.A., Hulton, N.J. 1994. Natural controls of fluvial denudation in major world drainage basins. Journal of Geophysical Research. 99: 13871-13884.

Yue, S., Pilon, P., Cavadias, G. 2002.Power of the Mann–Kendall and Spearman’s rho test to detecting monotonic trends in hydrological series. Journal of Hydrology. 259:254-271.

Verstraeten, G., Poesen, J. 2001. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology. 40: 123-144.

Verstraeten, G., Poesen, J., de Vente, J., Koninckx, X. 2003. Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology. 50: 327-348.

Vörösmarty, C.J., Meybeck, M. 2000. Riverine transport and its alteration by human activities. IGBP Newsletter. 39:24-29. Walling, D.E. 1999. Linking land use, erosion and sediment yields in river basins Hydrobiologia. 410: 223-240.

Walling, D.E., Fang, D. 2003. Recent trends in suspended sediment loads of the world ́s rivers. Global and Planetary Change. 39: 111-126.

Wilson, L. 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science. 273: 335-349.

Yang, S.L., Zhao, Q.Y., Baelkin, I.M. 2002. Temporal variation in the sediment load of the Yangtze River and the influences of human activities. Journal of Hydrology. 263: 56-71.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2015 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales