Uso de una mezcla dioxane/MeOH/NaBH4 en caliente como un medio conveniente para la reducción química selectiva del doble enlace C=C en sistemas α,β-insaturados
PDF (English)

Cómo citar

Abonia, R. ., & García, A. C. (2021). Uso de una mezcla dioxane/MeOH/NaBH4 en caliente como un medio conveniente para la reducción química selectiva del doble enlace C=C en sistemas α,β-insaturados. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 45(177), 1232–1245. https://doi.org/10.18257/raccefyn.1465

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Productos de Knoevenagel diversamente sustituidos fueron sometidos a reducción con una solución de NaBH4 en MeOH/p-dioxano a 70 oC. A través de este proceso, se alcanzó la reducción selectiva de sus dobles enlaces C=C en todos los casos. Las condiciones de reducción establecidas toleró una variedad de grupos funcionales, aunque productos simples de condensación aldólica o de Claisen- Schmidt mostraron menos selectividad hacia la reducción del doble enlace C=C, y por el contrario, condujo específicamente a la reducción de los grupos C=O. Adicionalmente, la selectividad de nuestras condiciones de reducción mediadas por NaBH4 fue comparada con la clásica hidrogenación catalítica mediada por Raney-Nickel para encontrar algunas similitudes y diferencias. Así mismo, se propuso una secuencia de pasos mecanísticos, con el fin de intentar explicar el proceso de reducción selectiva mediada por NaBH4. 

https://doi.org/10.18257/raccefyn.1465

Palabras clave

Chalconas | Productos de condensación de Knoevenagel | Sistemas α,β-insaturados | Reducciones selectivas | Reducciones mediadas por NaBH4 | Hidrogenación catalítica
PDF (English)

Citas

Aramini, A., Brinchi, L., Germani, R., Savelli, G. (2000). Reductions of α,β‐unsaturated ketones by NaBH4 or NaBH4 + CoCl2: Selectivity control by water or by aqueous micellar solutions. Eur. J. Org. Chem. 2000: 1793-1797. doi.org/10.1002/(SICI)1099-690(200005)2000:9<1793::AIDEJOC1793>3.0.CO;2-A

Balcells, D., Clot, E., Eisenstein, O., Nova, A., Perrin, L. (2016). Deciphering selectivity in organic reactions: A multifaceted problem. Acc. Chem. Res. 49: 1070-1078. doi: 10.1021/acs.accounts.6b00099

Cai, Q., Sheng, H.-Y., Li, D.-K., Liu, Y., Wu, A.-X. (2018). Base-promoted tandem cyclization for the synthesis of polyfunctional 2-hydroxy-,3-dihydrofurans from arylglyoxal monohydrates and 3-(1H-indol-3-yl)-3-oxopropanenitrile. Synlett. 29: 1926-1932. doi: 10.1055/s-0037-1609555

Chen, T., Xu, X.‐P., Ji, S.‐J. (2013). Facile and efficient synthesis of indol‐3‐yl substituted pyran derivatives via one‐pot multicomponent reactions under ultrasonic irradiation. J. Heterocycl. Chem. 50: 244-251. doi.org/10.1002/jhet.983

Chikashita, H., Nishida, S., Miyazaki, M., Morita, Y., Itoh, K. (1987). In situ generation and synthetic application of 2-henylbenzimidazoline to the selective reduction of carbon–carbon double bonds of electron-deficient olefins. Bull. Chem. Soc. Jpn. 60: 737-746. doi. org/10.1246/bcsj.60.737

Cornubert, R. & Eggert, H.G. (1954). Bull. Soc. Chim. Fr. 21: 522-523.

Cornubert, R. & Thomas, P. (1954). Bull. Soc. Chim. Fr. 21: 524-528.

Fadda, A.A., El-Mekabaty, A., Mousa, I.A., Elattar, K.M. (2014). Chemistry of 3-(1H-indol-3-yl)-3-oxopropanenitrile. Synth. Commun. 44:1579-1599. doi.org/10.1080/00397911.2013.861915

Felpin, F.-X. & Fouquet, E. (2010). A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O‐benzyl groups: The in situ preparation of an active Pd0/C catalyst with

well‐defined properties. Chem. Eur. J. 16: 12440–12445. doi.org/10.1002/chem.201001377 Gutierrez, M., Nazareno, M.A., Sosa, V., López de Mishima, B.A., Mishima, H.T. (2010).

Hydrogenation of chalcones using hydrogen permeating through a Pd and palladized Pd electrodes. Electrochim. Acta. 55: 5831–5839. doi.org/10.1016/j.electacta.2010.05.032

Hammond, C.N., Schatz, P.F., Davidson, T.A. (2009). Synthesis and hydrogenation of disubstituted chalcones. A guided-inquiry organic chemistry project. J. Chem. Educ. 86: 234-239. doi.org/10.1021/ed086p234

Inoue, K., Ishida, T., Shibata, I., Baba, A. (2002). Remarkable dependence of diastereoselectivity on anhydrous or aqueous solvent in the indium hydride promoted reductive aldol reaction of α,β‐unsaturated ketones. Adv. Synth. Catal. 344: 283-287. doi.org/10.1002/1615-

(200206)344:3/4<283::AID-ADSC283>3.0.CO;2-S

Insuasty, B., Ramírez, J., Becerra, D., Echeverry, C., Quiroga, J., Abonia, R., Robledo, S.M., Vélez, I.D., Upegui, Y., Munoz, J.A., Ospina, V., Nogueras, M., Cobo, J. (2015). An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4] diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur. J. Med. Chem. 93: 401-413. doi.org/10.1016/j.ejmech.2015.02.040

Insuasty, D., Robledo, S.M., Vélez, I.D., Cuervo, P., Insuasty, B., Quiroga, J., Nogueras, M., Cobo, J., Abonia, R. (2017). A Schmidt rearrangement-mediated synthesis of novel tetrahydro-benzo[1,4]diazepin-5-ones as potential anticancer and antiprotozoal agents. Eur. J. Med. Chem. 141: 567-583. doi.org/10.1016/j.ejmech.2017.10.024

Keess, S. & Oestreich, M. (2017). Access to fully alkylated germanes by B(C6F5)3-catalyzed transfer hydrogermylation of alkenes. Org. Lett. 19: 1898-1901. doi.org/10.1021/acs.orglett.7b00672

Kong, A., Han, X., Lu, X. (2006). Highly efficient construction of benzene ring in carbazoles by palladium-catalyzed endo-mode oxidative cyclization of 3-(3‘-alkenyl)indoles. Org. Lett. 8: 1339-1342. doi.org/10.1021/ol060039u

Lipshutz, B.H., Keith, J., Papa, P., Vivian, R. (1998). A convenient, efficient method for conjugate reductions using catalytic quantities of Cu(I). Tetrahedron Lett. 39: 4627-4630. doi.org/10.1016/S0040-4039(98)00855-7

Mohamadi, M., Setamdideh, D., Khezri, B. (2013). Regioselective and chemoselective reduction of Ramírez-Prada, J., Robledo, S.M., Vélez, D., Crespo, M.P., Quiroga, J., Abonia, R., Montoya, A., Svetaz, L., Zacchino, S., Insuasty, B. (2017). Synthesis of novel quinoline–based 4,5–dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem. 131: 237-254. doi.org/10.1016/j.ejmech.2017.03.016

Tucker, S.H. (1950). Catalytic hydrogenation using Raney nickel. J. Chem. Educ. 27: 489-493.

Wang, Q.-D., Yang, J.-M., Fang, D., Ren, J., Dong, B., Zhou, B., Zeng, B.-B. (2016). Chemoselective Cu (I) catalyzed bis (pinacolato) diboron conjugate addition and reduction onto α,β-unsaturated carbonyl compounds. Tetrahedron Lett. 57: 2587-2590. doi.org/10.1016/j.tetlet.2016.04.094

Ward, R.S. (1999). In Selectivity in organic synthesis, 1st Edition, Wiley eds,. ISBN: 978-0-471-98779-6

Zeynizadeh, B. & Shirini, F. (2003). Mild and efficient reduction of α,β-unsaturated carbonyl compounds, α-diketones and acyloins with sodium borohydride/Dowex1-x8 system. Bull. Korean Chem. Soc. 24: 295-298. doi.org/10.5012/bkcs.2003.24.3.295

Zheng, H.-X., Xiao, Z.-F., Yao, C.-Z., Li, Q.-Q., Ning, X.-S., Kang, Y.-B., Tang, Y. (2015). Transition-metal-free self-hydrogen-transferring allylic isomerization. Org. Lett. 17: 6102-6105. doi.org/10.1021/acs.orglett.5b03124

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2021 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales