Nanoscience, nanotechnology, and disruptive technologies in the context of precision medicine
PDF

How to Cite

Orozco , J. (2023). Nanoscience, nanotechnology, and disruptive technologies in the context of precision medicine. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 47(183), 221–241. https://doi.org/10.18257/raccefyn.1895

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Health care is experiencing a paradigm shift as regards disease diagnosis and management aimed at bringing precision medicine and care to those in need. For this purpose, pure sciences have allied with nanoscience, nanotechnology, and other converging/disruptive technologies to assume such a challenging undertaking. This paper illustrates how such convergence can generate solutions without precedents in healthcare, for example, the potential of electrochemical nanobiosensors for monitoring pathogens and multiparametric biomarkers at different molecular levels and elucidating an individual’s health status in a personalized manner. It also gives examples of electrochemical nanobiosensors explored for diagnostics, their potential for prognostics, and potentially assessing the risk of complications in patients. In this context, intelligent diagnostics play a crucial role in healthcare 4.0, as they may go from smart data to massive diagnostic test devices analyzed by big data analytics that benefit from converging technologies such as the internet of things, machine learning, deep learning, and smartphones, among other cutting-edge converging/disruptive technologies. The work highlights the potential of functional nanocarriers for site-specific and controlled drug delivery as a branch of precision medicine that promises to revolutionize healthcare. Finally, it includes some reflections on translational medicine, concluding remarks, and challenges to massively bring this revolutionary new technology to the global health systems.

https://doi.org/10.18257/raccefyn.1895

Keywords

Nanoscience and nanotechnology | Disruptive technology | Diagnostic | Treatment | disease | Precision medicine
PDF

References

Aditya, N. P., Espinosa, Y. G., Norton, I. T. (2017). Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances, 35(4), 450-457. https://doi.org/10.1016/J.BIOTECHADV.2017.03.012

Ahmed, J., Rashed, M. A., Faisal, M., Harraz, F. A., Jalalah, M., Alsareii, S. A. (2021). Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Applied Surface Science, 552, 149477. https://doi.org/10.1016/J.APSUSC.2021.149477

Alemán, J., Chadwick, A. V., He, J., Hess, M., Horie, K., Jones, R. G., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S., Stepto, R. F. T. (2007). Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC recommendations 2007). Pure and Applied Chemistry, 79(10), 1801-1829. https://doi.org/10.1351/PAC200779101801MACHINEREADABLECITATION/RIS

Alosaimi, B., Hamed, M. E., Naeem, A., Alsharef, A. A., AlQahtani, S. Y., AlDosari, K. M., Alamri, A. A., Al-Eisa, K., Khojah, T., Assiri, A. M., Enani, M. A. (2020). MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine, 126, 154895. https://doi.org/10.1016/J.CYTO.2019.154895

Alzate, D., Cajigas, S., Robledo, S., Muskus, C., Orozco, J. (2020). Genosensors for differential detection of Zika virus. Talanta, 210, 120648. https://doi.org/10.1016/J.TALANTA.2019.120648

Alzate, D., Lopez-Osorio, M. C., Cortés-Mancera, F., Navas, M. C., Orozco, J. (2022). Detection of hepatitis E virus genotype 3 in wastewater by an electrochemical genosensor. Analytica Chimica Acta, 1221, 340121. https://doi.org/10.1016/J.ACA.2022.340121

Alzate, D., Marín, E., Orozco, J., Muskus, C. (2022). Differential detection of Zika virus based on PCR. Journal of Virological Methods, 301, 114459. https://doi.org/10.1016/J.JVIROMET.2022.114459

Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Ricci, F., Volpe, G. (2016). Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends in Analytical Chemistry, 79, 114-126. https://doi.org/10.1016/J.TRAC.2016.01.032

Ashby, M., Cope, E., Cebon, D. (2013). Materials Selection for Engineering Design. Informatics for Materials Science and Engineering: Data-Driven Discovery for Accelerated Experimentation and Application, 219-244. https://doi.org/10.1016/B978-0-12-394399-6.00010-2

Aydın, M., Aydın, E. B., Sezgintürk, M. K. (2018). A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum. Biosensors and Bioelectronics, 107, 1-9. https://doi.org/10.1016/J.BIOS.2018.02.017

Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A

Barsan, M. M., Ghica, M. E., Brett, C. M. A. (2015). Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: A review. Analytica Chimica Acta, 881, 1-23. https://doi.org/10.1016/J.ACA.2015.02.059

Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. (2019). The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25(1), 112. https://doi.org/10.3390/MOLECULES25010112

Becerra, E. H., Quinchía, J., Castro, C., Orozco, J. (2022). Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials, 12(5), 836. https://doi.org/10.3390/NANO12050836

Bongomin, O., Yemane, A., Kembabazi, B., Malanda, C., Chikonkolo Mwape, M., Sheron Mpofu, N., Tigalana, D. (2020). Industry 4.0 Disruption and Its Neologisms in Major Industrial Sectors: A State of the Art. Journal of Engineering (United Kingdom), Volume 2020, Article ID 8090521, 45 pages. https://doi.org/10.1155/2020/8090521

Cajigas, S., Alzate, D., Fernández, M., Muskus, C., Orozco, J. (2022). Electrochemical genosensor for the specific detection of SARS-CoV-2. Talanta, 245, 123482. https://doi.org/10.1016/J.TALANTA.2022.123482

Cajigas, S., Alzate, D., Orozco, J. (2020). Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchimica Acta, 187(11), 1-10. https://doi.org/10.1007/S00604-020-04568-1/FIGURES/5

Cajigas, S., Orozco, J. (2020). Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules, 25(15), 3542. https://doi.org/10.3390/MOLECULES25153542

Chamola, V., Hassija, V., Gupta, V., Guizani, M. (2020). A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access, 8, 90225-90265. https://doi.org/10.1109/ACCESS.2020.2992341

Colorado, D., Fernández, M., Orozco, J., Lopera, Y., Muñoz, D. L., Acín, S., Balcazar, N. (2020). Metabolic Activity of Anthocyanin Extracts Loaded into Non-ionic Niosomes in Diet-Induced Obese Mice. Pharmaceutical Research, 37(8), 1-11. https://doi.org/10.1007/S11095-020-02883-Z/TABLES/3

Cruz-Pacheco, A. F., Quinchía, J., Orozco, J. (2023). Nanostructured poly(thiophene acetic acid)/Au/poly(methylene blue) interface for electrochemical immunosensing of p53 protein. Microchimica Acta, 190(4), 1-12. https://doi.org/10.1007/S00604-023-05683-5

Cruz-Pacheco, A. F., Quinchía, J., Orozco, J. (2022). Cerium oxide–doped PEDOT nanocomposite for label-free electrochemical immunosensing of anti-p53 autoantibodies. Microchimica Acta, 189(6), 1-13. https://doi.org/10.1007/S00604-022-05322-5/TABLES/1

Cruz, J. A., Wishart, D. S. (2006). Applications of machine learning in cancer prediction and prognosis. Cancer Informatics, 2, 59-77. https://doi.org/10.1177/117693510600200030/ASSET/IMAGES/LARGE/10.1177_117693510600200030-FIG2.JPEG

Dincer, C., Bruch, R., Costa-Rama, E., Fernández-Abedul, M. T., Merkoçi, A., Manz, A., Urban, G. A., Güder, F. (2019). Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 31(30), 1806739. https://doi.org/10.1002/ADMA.201806739

Dragicevic, N., Ullrich, A., Tsui, E., Gronau, N. (2019). A conceptual model of knowledge dynamics in the industry 4.0 smart grid scenario. Knowledge Management Research & Practice, 18(2), 199-213. https://doi.org/10.1080/14778238.2019.1633893

Duan, T., Chen, Y., Wen, Q., Yin, J., Wang, Y. (2016). Three-dimensional macroporous CNT–SnO2 composite monolith for electricity generation and energy storage in microbial fuel cells. RSC Advances, 6(64), 59610-59618. https://doi.org/10.1039/C6RA11869K

Echeverri, D., Cruz-Pacheco, A. F., Orozco, J. (2023). Capacitive nanobiosensing of β-1,4- galactosyltransferase-V colorectal cancer biomarker. Sensors and Actuators B: Chemical, 374, 132784. https://doi.org/10.1016/J.SNB.2022.132784

Echeverri, D., Garg, M., Varón Silva, D., Orozco, J. (2020). Phosphoglycan-sensitized platform for specific detection of anti-glycan IgG and IgM antibodies in serum. Talanta, 217, 121117. https://doi.org/10.1016/J.TALANTA.2020.121117

Echeverri, D., Orozco, J. (2022a). β-1,4-Galactosyltransferase-V colorectal cancer biomarker immunosensor with label-free electrochemical detection. Talanta, 243, 123337. https://doi.org/10.1016/J.TALANTA.2022.123337

Echeverri, D., Orozco, J. (2022b). Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules, 27(23), 8533. https://doi.org/10.3390/MOLECULES27238533

Fernández, M., Orozco, J. (2021). Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers, 13(15), 2464. https://doi.org/10.3390/POLYM13152464

Fidan-Yardimci, M., Akay, S., Sharifi, F., Sevimli-Gur, C., Ongen, G., Yesil-Celiktas, O. (2019). A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chemistry, 293, 57-65. https://doi.org/10.1016/J.FOODCHEM.2019.04.086

Frank, A. G., Dalenogare, L. S., Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26. https://doi.org/10.1016/J.IJPE.2019.01.004

Gallego, J., Tapia, J., Vargas, M., Santamaría, A., Orozco, J., López, D. (2017). Synthesis of graphene-coated carbon nanotubes-supported metal nanoparticles as multifunctional hybrid materials. Carbon, 111, 393-401. https://doi.org/10.1016/J.CARBON.2016.10.014

Götze, S., Azzouz, N., Tsai, Y. H., Groß, U., Reinhardt, A., Anish, C., Seeberger, P. H., Silva, D. V. (2014). Diagnosis of Toxoplasmosis Using a Synthetic Glycosylphosphatidylinositol Glycan. Angewandte Chemie International Edition, 53(50), 13701-13705. https://doi.org/10.1002/ANIE.201406706

Gu, H., Liu, C., Zhu, J., Gu, J., Wujcik, E. K., Shao, L., Wang, N., Wei, H., Scaffaro, R., Zhang, J., Guo, Z. (2017). Introducing advanced composites and hybrid materials. Advanced Composites and Hybrid Materials, 1(1), 1-5. https://doi.org/10.1007/S42114-017-0017-Y

Haddara, M., Staaby, A. (2018). RFID Applications and Adoptions in Healthcare: A Review on Patient Safety. Procedia Computer Science, 138, 80-88. https://doi.org/10.1016/J.PROCS.2018.10.012

Hasanzadeh, M., Shadjou, N., de la Guardia, M., Eskandani, M., Sheikhzadeh, P. (2012). Mesoporous silica-based materials for use in biosensors. TrAC Trends in Analytical Chemistry, 33, 117-129. https://doi.org/10.1016/J.TRAC.2011.10.011

Hosseinifard, M., Naghdi, T., Morales-Narváez, E., Golmohammadi, H. (2021). Toward Smart Diagnostics in a Pandemic Scenario: COVID-19. Frontiers in Bioengineering and Biotechnology, 9, 510. https://doi.org/10.3389/FBIOE.2021.637203/BIBTEX

Jayaraman, P. P., Forkan, A. R. M., Morshed, A., Haghighi, P. D., Kang, Y. B. (2020). Healthcare 4.0: A review of frontiers in digital health. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2), e1350. https://doi.org/10.1002/WIDM.1350

Kamps, R., Brandão, R. D., van den Bosch, B. J., Paulussen, A. D. C., Xanthoulea, S., Blok, M. J., Romano, A. (2017). Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification. International Journal of Molecular Sciences 2017, 18(2), 308. https://doi.org/10.3390/IJMS18020308

Kelkar, S. S., Reineke, T. M. (2011). Theranostics: Combining imaging and therapy. Bioconjugate Chemistry, 22(10), 1879-1903. https://doi.org/10.1021/BC200151Q/ASSET/IMAGES/MEDIUM/BC-2011-00151Q_0006.GIF

Krueger, A. K., Hendriks, B., Gauch, S. (2019). The multiple meanings of translational research in (bio)medical research. History and Philosophy of the Life Sciences, 41(4), 1-24. https://doi.org/10.1007/S40656-019-0293-7/FIGURES/3

Kumar, M., Taki, K., Gahlot, R., Sharma, A., Dhangar, K. (2020). A chronicle of SARS-CoV-2: Part-I - Epidemiology, diagnosis, prognosis, transmission and treatment. Science of The Total Environment, 734, 139278. https://doi.org/10.1016/J.SCITOTENV.2020.139278

Lins, T., Oliveira, R. A. R. (2020). Cyber-physical production systems retrofitting in context of industry 4.0. Computers & Industrial Engineering, 139, 106193. https://doi.org/10.1016/J.CIE.2019.106193

Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H., Li, W., Tong, Q., Yi, J., Zhao, L., Xiong, L., Guo, C., Tian, J., Luo, J., Yao, J., Pang, R., Shen, H., Peng, C., Liu, T., … Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine, 55, 139-140. https://doi.org/10.1016/j.ebiom.2020.102763

Liu, Y., Liu, J., Tang, H., Liu, J., Xu, B., Yu, F., Li, Y. (2015). Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors and Actuators B: Chemical, 206, 647-652. https://doi.org/10.1016/J.SNB.2014.10.019

Malik, P., Patel, U., Mehta, D., Patel, N., Kelkar, R., Akrmah, M., Gabrilove, J. L., Sacks, H. (2021). Biomarkers and outcomes of COVID-19 hospitalisations: systematic review and meta-analysis. BMJ Evidence-Based Medicine, 26(3), 107-108. https://doi.org/10.1136/BMJEBM-2020-111536

Mancinelli, L., Cronin, M., Sadée, W. (2000). Pharmacogenomics: The promise of personalized medicine. AAPS PharmSci, 2(1), 29-41. https://doi.org/10.1208/PS020104

Mariappan, V., Manoharan, P. S., R, P., Shanmugam, L., Rao, S. R., Pillai, A. B. (2021). Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microbial Pathogenesis, 158, 105057. https://doi.org/10.1016/J.MICPATH.2021.105057

Mejía, S. P., López, D., Cano, L. E., Naranjo, T. W., Orozco, J. (2022). Antifungal Encapsulated into Ligand-Functionalized Nanoparticles with High Specificity for Macrophages. Pharmaceutics, 14(9), 1932. https://doi.org/10.3390/PHARMACEUTICS14091932/S1

Mejía, S. P., Sánchez, A., Vásquez, V., Orozco, J. (2021). Functional Nanocarriers for Delivering Itraconazole Against Fungal Intracellular Infections. Frontiers in Pharmacology, 12, 1520. https://doi.org/10.3389/FPHAR.2021.685391/BIBTEX

Mena-Giraldo, P., Orozco, J. (2022). Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Applied Materials and

Interfaces, 14(4), 5897-5907. https://doi.org/10.1021/ACSAMI.1C14663/SUPPL_FILE/AM1C14663_SI_007.MP4

Mena-Giraldo, P., Pérez-Buitrago, S., Londoño-Berrío, M., Ortiz-Trujillo, I. C., Hoyos-Palacio, L. M., Orozco, J. (2020). Photosensitive nanocarriers for specific delivery of cargo into cells. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-58865-z

Morales-Narváez, E., Dincer, C. (2020). The impact of biosensing in a pandemic outbreak: COVID-19. Biosensors and Bioelectronics, 163, 112274. https://doi.org/10.1016/J.BIOS.2020.112274

Noreña-Caro, D., Álvarez-Láinez, M. (2016). Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde. Materials & Design, 95, 632–640. https://doi.org/10.1016/J.MATDES.2016.01.106

Peluso, M. J., Lu, S., Tang, A. F., Durstenfeld, M. S., Ho, H. E., Goldberg, S. A., Forman, C. A., Munter, S. E., Hoh, R., Tai, V., Chenna, A., Yee, B. C., Winslow, J. W., Petropoulos, C. J., Greenhouse, B., Hunt, P. W., Hsue, P. Y., Martin, J. N., Daniel Kelly, J., … Henrich, T. J. (2021). Markers of Immune Activation and Inflammation in Individuals With Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. The Journal of Infectious Diseases, 224 (11), 1839–1848. https://doi.org/10.1093/INFDIS/JIAB490

Pérez, D. J., Patiño, E. B., Orozco, J. (2022). Electrochemical Nanobiosensors as Point-of-Care Testing Solution to Cytokines Measurement Limitations. Electroanalysis, 34 (2), 184–211. https://doi.org/10.1002/ELAN.202100237

Pérez, D., rozco, J. (2022). Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Microchimica Acta, 189(3), 1-28. https://doi.org/10.1007/S00604-022-05228-2

Priyadharshini, V. S., Teran, L. M. (2016). Personalized Medicine in Respiratory Disease: Role of Proteomics. Advances in Protein Chemistry and Structural Biology, 102, 115-146. https://doi.org/10.1016/BS.APCSB.2015.11.008

Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., Rodthongkum, N. (2015). An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical, 207(PartA), 526-534. https://doi.org/10.1016/J.SNB.2014.10.126

Quinchía, J., Echeverri, D., Cruz-Pacheco, A. F., Maldonado, M. E., Orozco, J. A. (2020). Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. Micromachines, 11(4), 411. https://doi.org/10.3390/MI11040411

Rainnie, A., Dean, M. (2019). Industry 4.0 and the future of quality work in the global digital economy. Labour and Industry, 30(1), 16-33. https://doi.org/10.1080/10301763.2019.1697598

Rosin, F., Forget, P., Lamouri, S., Pellerin, R. (2019). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 58(6), 1644-1661. https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1672902

Sánchez, A., Mejía, S. P., Orozco, J. (2020). Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules, 25(16), 3760. https://doi.org/10.3390/MOLECULES25163760

Scherr, T. F., Gupta, S., Wright, D. W., Haselton, F. R. (2017). An embedded barcode for “connected” malaria rapid diagnostic tests. Lab on a Chip, 17(7), 1314-1322. https://doi.org/10.1039/C6LC01580H

Sony, M., Naik, S. (2020). Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model. Technology in Society, 61, 101248. https://doi.org/10.1016/J.TECHSOC.2020.101248

Soto, D., Alzate, M., Gallego, J., Orozco, J. (2018). Electroanalysis of an Iron@Graphene-Carbon Nanotube Hybrid Material. Electroanalysis, 30(7), 1521-1528. https://doi.org/10.1002/ELAN.201800115

Soto, D., Alzate, M., Gallego, J., Orozco, J. (2021). Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 880, 114826. https://doi.org/10.1016/J.JELECHEM.2020.114826

Soto, D., Orozco, J. (2022a). Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Analytica Chimica Acta, 1205, 339739. https://doi.org/10.1016/J.ACA.2022.339739

Soto, D., Orozco, J. (2022b). Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules, 27(12), 3841. https://doi.org/10.3390/MOLECULES27123841

Tan, H. T., Low, J., Lim, S. G., Chung, M. C. M. (2009). Serum autoantibodies as biomarkers for early cancer detection. The FEBS Journal, 276(23), 6880-6904. https://doi.org/10.1111/J.1742-4658.2009.07396.X

Ting, D. S. W., Carin, L., Dzau, V., Wong, T. Y. (2020). Digital technology and COVID-19. Nature Medicine, 26(4), 459-461. https://doi.org/10.1038/s41591-020-0824-5

Torrente-Rodríguez, R. M., Lukas, H., Tu, J., Min, J., Yang, Y., Xu, C., Rossiter, H. B., Gao, W. (2020). SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter, 3(6), 1981-1998. https://doi.org/10.1016/j.matt.2020.09.027

Tsikala Vafea, M., Atalla, E., Georgakas, J., Shehadeh, F., Mylona, E. K., Kalligeros, M., Mylonakis, E. (2020). Emerging Technologies for Use in the Study, Diagnosis, and Treatment of Patients with COVID-19. Cellular and Molecular Bioengineering, 13(4), 249-257. https://doi.org/10.1007/S12195-020-00629-W/METRICS

Vásquez, G., Rey, A., Rivera, C., Iregui, C., Orozco, J. (2017). Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosensors and Bioelectronics, 87, 453-458. https://doi.org/10.1016/J.BIOS.2016.08.082

Vásquez, V., Navas, M.-C., Jaimes, J. A., Orozco, J. (2022). SARS-CoV-2 electrochemical immunosensor based on the spike-ACE2 complex. Analytica Chimica Acta, 1205, 339718.https://doi.org/10.1016/J.ACA.2022.339718

Vásquez, V., Orozco, J. (2022). Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Analytical and Bioanalytical Chemistry, 415(6), 1003-1031. https://doi.org/10.1007/S00216-022-04237-7

World Health Organization. (2019). WHO guideline. Recommendations on digital interventions for health system strengthening. 124.

Xie, J., Lee, S., Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. https://doi.org/10.1016/J.ADDR.2010.07.009

Xu, X., Akay, A., Wei, H., Wang, S., Pingguan-Murphy, B., Erlandsson, B. E., Li, X., Lee, W., Hu, J., Wang, L., Xu, F. (2015). Advances in Smartphone-Based Point-of-Care Diagnostics. Proceedings of the IEEE, 103(2), 236-247. https://doi.org/10.1109/JPROC.2014.2378776

Yahata, N., Kasai, K., Kawato, M. (2017). Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry and Clinical Neurosciences, 71 (4), 215–237. https://doi.org/10.1111/PCN.12502

You, M., Yang, S., An, Y., Zhang, F., He, P. (2020). A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-ased sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry, 862, 114017. https://doi.org/10.1016/J.JELECHEM.2020.114017

Zerhouni, E. A. (2007). Translational Research: Moving Discovery to Practice. Clinical Pharmacology & Therapeutics, 81(1), 126-128. https://doi.org/10.1038/SJ.CLPT.6100029

Zhang, J., Chai, Y., Yuan, R., Yuan, Y., Bai, L., Xie, S. (2013). A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst, 138(22), 6938-6945. https://doi.org/10.1039/C3AN01587D

Zhang, L., Guo, H. (2020). Biomarkers of COVID-19 and technologies to combat SARS-CoV-2.Advances in Biomarker Sciences and Technology, 2, 1-23. https://doi.org/10.1016/J.ABST.2020.08.001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales