A very useful convolution and some illustrious derivatives
Portada 43 (168) 2019
PDF (Español (España))
XML (Español (España))

How to Cite

Mejía Salazar, C. E. (2019). A very useful convolution and some illustrious derivatives. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(168), 563–571. https://doi.org/10.18257/raccefyn.767

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Este artículo trata sobre operadores de molificación discreta y sobre derivadas fraccionarias. Los operadores de molificación se definen a partir de convoluciones con núcleos gaussianos truncados, tanto en una como en dos dimensiones. Iniciamos con una descripción de sus orígenes y de sus principales propiedades y después consideramos en detalle dos aplicaciones que indican lo útiles que son estos operadores. Las aplicaciones se basan en ecuaciones diferenciales parciales difusivas con derivadas temporales fraccionarias. Estas derivadas merecen el calificativo de ilustres como se verá más adelante. La primera aplicación consiste en la solución estable de un problema inverso de advección-dispersión, con derivada temporal fraccionaria, en el que la concentración es desconocida en la frontera de un dominio unidimensional semi-infinito. La segunda aplicación es la solución estable de un problema inverso bidimensional de identificación de un término fuente en una ecuación de difusión con derivada temporal fraccionaria. En cada caso se incluye la descripción del problema, la implementación de la molificación, el método de solución y algunos experimentos numéricos. Para el problema en dos dimensiones incluímos resultados recientemente enviados para publicación.

 

https://doi.org/10.18257/raccefyn.767
PDF (Español (España))
XML (Español (España))

References

Acosta, C. D. & Bürger, R. (2012). Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions, IMA J. Numer. Anal. 32:1509-1540.

Acosta, C. D., Bürger, R., Mejía, C. E. (2012). Monotone difference schemes stabilized by discrete mollification for strongly degenerate parabolic equations, Numer. Meth. Partial Diff. Eqns. 28: 38-62.

Acosta, C. D., Bürger, R., Mejía, C. E. (2014). A stability and sensitivity analysis of parametric functions in a sedimentation model, DYNA Vol. 81 (183): 22-30.

Acosta, C. D. Bürger, R., Mejía, C. E. (2015). Efficient parameter estimation in a macroscopic traffic flow model by discrete mollification, Transportmetrica A: Transport Science. 11 (8): 702-715.

Acosta, C. D. & Mejía, C. E. (2014). Stable computations by discrete mollification, Bogotá, Universidad Nacional de Colombia. p. 108.

Acosta, C. D. & Mejía, C. E. (2008). Stabilization of explicit methods for convection diffusion equations by discrete mollification. Computers Math. Applic. 55: 368-380.

Benson, D. A., Wheatcraft, S. W., Meerschaert M. M. (2000). Application of a fractional advection-dispersion equation. Water Resources Research. 36: 1403-1412.

Diethelm, K. (2010). The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. Berlin, Springer. p. 247.

Echeverry, M. D. (2018). Fractional differential equations and inverse problems. Tesis de Doctorado en preparación, Universidad Nacional de Colombia, sede Medellín.

Echeverry, M. D. & Mejía, C. E. (2018). A two dimensional discrete mollification operator and the numerical solution of an inverse source problem. Axioms. 7 (4): 89. Doi: 0.3390/axioms7040089

Fomin, S., Chugunov, V., Hashida, T. (2010). Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Porous Med. 81: 187-205.

Friedrichs, K. O. (1944). The identity of weak and strong extensions of differential operators. Trans. AMS. 55: 132-151.

Garshasbi, M. & Dastour, H. (2015). Estimation of unknown boundary functions in an inverse heat conduction problem using a mollified marching scheme. Numer. Algor. 68:769-790.

Guo, B., Pu, X., Huang, F. (2015). Fractional partial differential equations and their numerical solutions. New Jersey, World Scientific. p. 336.

Hao, D. N. (1994). A mollification method for ill-posed problems. Numer. Math. 68: 469-506.

Li, Z. & Fu, C. (2011). A mollification method for a Cauchy problem for the Laplace equation. Applied Mathematics and Computation. 217: 9209-9218.

Ma, Y.-K., Prakash, P., Deiveegan, A. (2018). Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. Chaos, Solitons and Fractals. 108: 39-48.

Manselli, P. & Miller K. (1980). Calculations of the surface temperature and heat flux on one side of a wall from measurements on the opposite side. Ann. Math. Pura Appl. 123: 161-183.

Mejía, C. E. (2007). Sobre el método de molificación. Trabajo presentado como requisito parcial para promoción a profesor titular, Medellín, Universidad Nacional de Colombia.

Mejía, C. E., Acosta, C. D., Saleme, K. (2011). Numerical identification of a nonlinear diffusion coefficient by discrete mollification. Computers Math. Applic. 62: 2187-2199.

Mejía, C. E. & Murio, D. A. (1995). Numerical identification of diffusivity coefficient and initial condition by discrete mollification. Computers Math. Applic. 30: 35-50.

Mejía, C. E. & Murio, D. A. (1996). Numerical solution of generalized inverse heat conduction problem by discrete mollification. Computers Math. Applic. 32: 33-50.

Mejía, C. E. & Piedrahita, A. (2019). A numerical method for a time fractional advection-dispersion equation with a nonlinear source term. J. Appl. Math. Comput. Doi: 10.1007/s12190-019-01266-x

Mejía, C. E. & Piedrahita, A. (2017). Solution of a time fractional inverse advection-dispersion problem by discrete mollification. Revista Colombiana de Matemáticas. 51 (1):83-102.

Mejía, C. E. & Piedrahita, A. (2018). A finite difference approximation of a two dimensional time fractional advectiondispersion problem. https://arxiv.org/abs/1807.07393

Miller, K. S. & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York, John Wiley & Sons. p. 366.

Murio, D. A. (1993). The mollification method and the numerical solution of ill-posed problems. New York, Estados Unidos. John Wiley and Sons. p. 254.

Murio, D. A. (2002). Mollification and space marching. En K. Woodbury (ed.), Inverse Engineering Handbook. Boca Raton, Estados Unidos. CRC Press. p. 466.

Murio, D. A. (2007). Stable numerical solution of a fractionaldiffusion inverse heat conduction problem. Computers Math. Applic. 53: 1492-1501.

Murio, D. A. (2008). Implicit finite difference approximation for time fractional diffusion equations. Computers Math. Applic. 56: 1138-1145.

Murio, D. A. & Mejía, C. E. (2008a). Generalized time fractional IHCP with Caputo Fractional Derivatives, Journal of Physics: Conference Series. 135: 012074. Una convolución muy útil y unas derivadas ilustres 571 doi: http://dx.doi.org/10.18257/raccefyn.767

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 43(168):563-571, julio-septiembre de 2019 Murio, D. A. & Mejía, C. E. (2008b). Source Terms Identification for Time Fractional Diffusion Equation. Revista Colombiana de Matemáticas. 42 (1): 25-46.

Oldham, K. B. & Spanier, J. (2006). the fractional calculus. Theory and applications of differentiation and integration to arbitrary order. Mineola, New York, Estados Unidos. Dover Publications. p. 234.

Podlubny, I. (1999). Fractional differential equations. Academic Press. p. 340. Sakamoto, K. & Yamamoto, M. (2011). Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382: 426-447.

Shi, C., Wang, C., Wei, T. (2016). Convolution regularization method for backward problems of linear parabolic equations. Applied Numerical Mathematics. 108: 143-156.

Zhan, S. & Murio, D. A. (1999). Surface fitting and numerical gradient computations by discrete mollification. Computers Math. Applic. 37: 85-102.

Zhan, S., Coles, C., Murio, D. A. (2001). Automatic numerical solution of generalized 2-D IHCP by discrete mollification, Computers Math. Applic. 41: 15-38.

Declaration of originality and transfer author's rights

The authors declare:

  1. The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material. 
  2. All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
  4. In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
  5. By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.

Transfer of author rights

In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:

The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.

If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.

If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.

No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.