Abstract
We present here the results of several numerical Newtonian N-body simulations of the accretion towards the Milky Way of associations of dwarf spheroidal galaxies with and without dark matter content. We generated the initial objects using ZENO and simulated an isolated environment where these associations fall towards the dark matter halo of the Milky Way using GADGET-2. In order to test if the disk of satellites of the Milky Way (DoS) could have been formed by that kind of accretions, we analyzed some characteristics of the final dwarf galaxies such as their distribution with respect to the disk of the Galaxy, their density profile, velocity dispersion and radial velocities. The associations were initially located at radial distances of 4, 2 y 1 Mpc from the center of the Milky Way, and the evolution of the system was simulated for 10 Gyr in each of the runs. We found that associations located at initial radial distances larger than 2 Mpc were not suitable because their time of infall was larger than a Hubble time, and that for the case of associations initially located at 1 Mpc from the center of the Milky Way, it is unlikely that, with the parameters used in this study, the satellites of the DoS could come from dark matter-free associations of dwarf galaxies, while it is possible that the DoS may have been formed by the infall of associations of dwarf galaxies embedded in dark matter haloes following parabolic orbits. However, the distances of the remnants at the final snapshot do not reproduce those reported in the literature for the satellites of the Milky Way. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.References
Angus, G. W., Diaferio, A., Kroupa, P. (2011). Using dwarf satellite proper motions to determine their origin. Monthly Notices of the Royal Astronomical Society. 416 (2): 1401- 1409. https://doi.org/10.1111/j.1365-2966.2011.19138.x
Barnes, J. E. (2018). ZENO. World-wide electronic publication, Institute for Astronomy, University of Hawaii, Hawaii. Available at http://www.ifa.hawaii.edu/~barnes/software. html, acceded between January and March 2018.
Benavides, J. & Casas Miranda, R. A. (2017). Fall of associations of dwarf galaxies into the Milky Way halo. In M. A. Higuera Garzón & S. Vargas Domínguez (Eds.), XV Latin American Regional IAU Meeting Cartagena 2016 . Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). 49: 174.
Benavides, J. (2015). Simulaciones numéricas de la caída de asociaciones de galaxias enanas al halo de la Vía Láctea (Master’s thesis). Universidad Nacional de Colombia.
Benavides, J. & Casas-Miranda, R. A. (2018). Infall of Associations of Dwarf Galaxies into the Milky Way Halo. In A. García-Varela, K. Vieira, R. A. Méndez, C. Allen, W. van Altena, & M. Altmann (Eds.), VII Reunión de Astronomía Dinámica en Latinoamérica (ADeLA 2016). Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). 50: 13-14.
Bohórquez, O. & Casas-Miranda, R. (2016). Origin of the Milky Way Disk of Satellites: Collision of Two Disk Galaxies. Tecciencia. 11 (21): 33-37. https://doi.org/10. 18180/tecciencia.2016.21.6
Casallas, A. (2014). Estudio de la formación del disco de satélites de la Vía Láctea (DoS) como un grupo de progenitores que entra al halo de la galaxia (Master’s thesis). Universidad Nacional de Colombia.
Casas, R. A., Arias, V., Peña-Ramírez, K., Kroupa, P. (2012). Dwarf spheroidal satellites of the Milky Way from dark matter free tidal dwarf galaxy progenitors: Maps of orbits. Monthly Notices of the Royal Astronomical Society. 424 (3): 1941- 1951. https://doi.org/10.1111/j.1365-2966.2012.21319.x
Da Costa, G. S. (1999). The Dwarf Spheroidal Galaxies in the Galactic Halo. In B. K. Gibson, R. S. Axelrod, & M. E. Putman (Eds.). The Third Stromlo Symposium: The Galactic Halo (Vol. 165, p. 153). Retrieved from http:// arxiv.org/abs/astro-ph/9901258
Hernquist, L. (1990). An analytical model for spherical galaxies and bulges. The Astrophysical Journal. 356: 359. https:// doi.org/10.1086/168845
Holmberg, E. (1969). A study of physical groups of galaxies. Arkiv for Astronomi, 5: 305-343.
Klypin, A., Kravtsov, A. V., Valenzuela, O., Prada, F. (1999). Where Are the Missing Galactic Satellites? The Astrophysical Journal. 522 (1): 82-92. https://doi.org/10.1086/307643
Law, D. R., Johnston, K. V., Majewski, S. R. (2005). A Two Micron All‐Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails. The Astrophysical Journal. 619 (2): 807-823. https://doi.org/10.1086/426779
Łokas, E. L., Gajda, G., Kazantzidis, S. (2013). Tidal tails of dwarf galaxies on different orbits around the Milky Way. Monthly Notices of the Royal Astronomical Society. 433 (1): 878-888. https://doi.org/10.1093/mnras/stt774
Mateo, M. (1996). Dwarf Spheroidal Galaxies and the Formation of the Galactic Halo. In H. L. Morrison & A. Sarajedini (Eds.). Formation of the Galactic Halo...Inside and Out. (Vol. 92, p. 434).
Mayer, L. (2010). Environmental Mechanisms Shaping the Nature of Dwarf Spheroidal Galaxies: The View of Computer Simulations. Advances in Astronomy. 2010: 1-21. https:// doi.org/10.1155/2010/278434
Metz, M., Kroupa, P., Jerjen, H. (2007). The spatial distribution of the Milky Way and Andromeda satellite galaxies. Monthly Notices of the Royal Astronomical Society. 374 (3): 1125- 1145. https://doi.org/10.1111/j.1365-2966.2006.11228.x
Metz, M., Kroupa, P., Jerjen, H. (2009). Discs of satellites: The new dwarf spheroidals. Monthly Notices of the Royal Astronomical Society. 394 (4): 2223-2228. https://doi. org/10.1111/j.1365-2966.2009.14489.x
Metz, M., Kroupa, P., Libeskind, N. I. (2008). The Orbital Poles of Milky Way Satellite Galaxies: A Rotationally Supported Disk of Satellites. The Astrophysical Journal. 680 (1): 287- 294. https://doi.org/10.1086/587833
Metz, M., Kroupa, P., Theis, C., Hensler, G., Jerjen, H. (2009). Did the Milky Way Dwarf Satellites Enter the Halo As a Group? The Astrophysical Journal. 697 (1): 269-274. https://doi.org/10.1088/0004-637X/697/1/269
Müller, O., Jerjen, H., Pawlowski, M. S., Binggeli, B. (2016). Testing the two planes of satellites in the Centaurus Group. A&A. 595 (2015): 1-10. https://doi.org/10.1051/0004- 6361/201629298
Navarro, J. F., Frenk, C. S., White, S. D. M. (1996). A Universal Density Profile from Hierarchical Clustering. The Astrophysical Journal. 490 (2): 493–508. https://doi. org/10.1086/304888
Pawlowski, M. S., Pflamm-Altenburg, J., Kroupa, P. (2012). The VPOS: A vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way. Monthly Notices of the Royal Astronomical Society. 423 (2): 1109- 1126. https://doi.org/10.1111/j.1365-2966.2012.20937.x
Plummer, H. C. (1911). On the Problem of Distribution in Globular Star Clusters: (Plate 8.). Monthly Notices of the Royal Astronomical Society. 71 (5): 460-470. https://doi. org/10.1093/mnras/71.5.460
Sawala, T. (2011). Simulations of Dwarf Galaxy Formation (PhD thesis). Ludwig-Maximilians-Universität München. Retrieved from: http://nbn-resolving.de/urn:nbn:de:bvb:19-132531
Springel, V. (2005). The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical Society. 364 (4): 1105-1134. https://doi.org/10.1111/j.1365-296 6.2005. 09655.x
Springel, V., Di Matteo, T., Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society. 361 (3): 776-794. https://doi.org/10.1111/j.1365-2966.2005.09238.x
Springel, V., White, S. D. M. (1998). Tidal tails in CDM cosmologies. MNRAS. 307: 162-178. https://doi.org/10. 1046/j.1365- 711.1999.02613.x
Tully, R. B., Rizzi, L., Dolphin, A. E., Karachentsev, I. D., Karachentseva, V. E., Makarov, D. I., … Shaya, E. J. (2006). Associations of Dwarf Galaxies. The Astronomical Journal. 132 (2): 729–748. https://doi.org/10.1086/505466
York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J., Bahcall, N. A., … Yasuda, N. (2000). The Sloan Digital Sky Survey: Technical Summary. The Astronomical Journal. 120 (3): 1579-1587. https://doi.org/10.1086/301513
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales