Unified digestion and decalcification protocol for three DNA extraction methods in human remains
PDF (Español (España))

Supplementary Files

Tabla 1S. Evaluación de la eficiencia de la digestión (Español (España))
Figura 1S. Amplificación ADN de la línea celular 9947A (Español (España))
Figura 2S. Amplificación del ADN de la línea celular 2800M (Español (España))
Figura 3S. Amplificación de ADN de la muestra de fémur (Español (España))
Tabla 2S. ADN recuperado a partir de dos cantidades de material pulverizado (Español (España))
Tabla 3S. Evaluación de resultados en muestras de los casos del Laboratorio (Español (España))
Figura 4S. Porcentaje de éxito del protocolo unificado (Español (España))

How to Cite

Sierra, W. U., del Castillo-Sabogal, H., & Espitia-Ortiz, T. (2018). Unified digestion and decalcification protocol for three DNA extraction methods in human remains. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(161), 447–455. https://doi.org/10.18257/raccefyn.527

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The identification of human remains using DNA from bones and teeth is a current procedure in forensic laboratories worldwide. At least three methods are used in DNA extraction from mineralized tissue: Organic (phenol-chloroform), silica (QIAquick, QIAgen) and magnetic particles (Prepfiler Express™ BTA Forensic DNA Extraction Kit); each one has its own procedure for decalcification, digestion, DNA purification, and elution, as well as for obtaining the initial amount of material. Although the three methods are equally efficient, we standardized a decalcification-digestion protocol to use it with any of the three DNA purification methods. We evaluated the quantity of powder, detergent and protease concentration, device concentrators and buffer for demineralization in bones and teeth from forensic cases of the Laboratory and DNA of common cellular lines by assessing the amount of recovered DNA and the quality of the genetic profile. The unified protocol for digestion and decalcification allowed a full degradation of bone powder, and good quality DNA recovery, independently of the purification method used in the subsequent step. Success percentage with this protocol was nearly 80 %. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
https://doi.org/10.18257/raccefyn.527
PDF (Español (España))

References

Amory, S., Huel, R., Bilic, A., Loreille, O., Parsons, T. (2012). Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Science International Genetics. 6: 398-406.

Applied Biosystems by Life Technologies. (2012). AutoMate Express™ Instrument.

Barrio-Caballero, P. (2013). Revisión de métodos de extracción de ADN a partir de restos óseos en el laboratorio forense. Revista Española de Medicina Legal. 39 (2): 54-62.

Bonewald, L. (2011). The Amazing Osteocyte. Journal of Bone and Mineral Research. 26: 229-238.

Brevnov, M., Pawar, H., Mundt, J., Calandro, L., Furtado, M., Shewale, J. (2009). Developmental Validation of the PrepFiler Forensic DNA Extraction Kit for Extraction of Genomic DNA from Biological Samples. Forensic Science. 54: 3.

Campos , P., Craig, O., Turner-Walker, G., Peacock, E., Gilbert, M. (2012). DNA in Ancient Bone – Where is it located and how should we extract it? Annals of Anatomy. 194: 7-16.

Collins, M., Nielsen-Marsh, C., Hiller, J., Smith, C., Roberts, J. (2002). The Survival of Organic Matter in Bone: A Review. Archeometry. 44: 383-394.

Davoren, J., Vanek, D., Crews, J., Huffine, E., Parsons, T. (2007). Highly Effective DNA Extraction Method for Nuclear Short Tandem Repeat Testing of Skeletal Remains from Mass Graves. Croat Med J. 48: 478-485.

Dukes , M., Williams, A., Massey, C., Wojtkiewicz , P. (2012). Technical Note: Bone DNA Extraction and Purification Using Silica-Coated Paramagnetic Beads. American Journal of Physical Anthropology. 148 (3): 473-482.

Edson, S., Ross, J., Coble , M., Parsons, T., Barritt , S. (2004). Naming the Dead Confronting the Realities of Rapid Identification of Degraded Skeletal Remains. Fororensic Science. 16: 64-88.

Frías, I., López-Soto, M., Prieto, V., Torres, Y. (2012). Identificación de ADN en Huesos y Piezas Dentales. Capítulo 2.2. Zaragoza.

Gamba, C., Hanghøj, K., Gaunitz, C., Alfharan, A., Alquraishi, S., Bradley, D., Orlando, L. (2016). Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Molecular Ecology Resources.16: 459-69.

Gill, P., Ivanov, P., Kimpton, C., Piercy, R., Benson, N. (1994). Identification of the remains of the Romanov family by DNA analysis. Nature Genetics. 6: 130-136.

Higgins, D. & Austin, J. (2013). Teeth as a source of DNA for forensic identification of human remains: A Review. Science and Justice. 53: 433-441.

Jakubowska, J., Maciejewska, A., Pawłowski, R. (2012). Comparison of three methods of DNA extraction from human bones with different degrees of degradation. International Journal of Legal Medicine. 126: 173-178.

Kitayama, T., Ogawa, Y., Fijii, K., Nakahara, H., Mizuno, N., Sekiguchi, K., Fukushima, H. (2010). Evaluation of a new experimental kit for the extraction of DNA from bones and teeth using a non-powder method. Legal Medicine. 12:84-89.

Kulstein, G., Hadrys, T., Wiegand, P. (2017). As solid as a rockcomparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. International Journal Of Legal Medicine. doi.org/10.1007/s00414-017-1653-z

Life Technologies Corporation. (2010). PrepFiler Express and PrepFiler Express BTA Forensic DNA Extraction Kits. User Guide.

Liu, J., Zhong, C., Holt, A., Lagace, R., Harrold, M., Dixon, A., Hennessy, L. (2012). AutoMate Express™ forensic DNA extraction system for the extraction of genomic DNA from biological samples. Journal of Forensic Science. 57:1022-30.

Loreille, O., Diegoli, T., Irwin, J., Coble, M., Parsons, T. (2007). High Efficiency DNA Extraction from Bone by Total Demineralization. Forensic Science International Genetics. 1: 191-195.

Miloš, A., Selmanoviæ, A., Smajloviæ, L., Huel, R., Katzmarzyk, C., Rizviæ, A., Parsons, T. (2007). Success Rates of Nuclear Short Tandem Repeat Typing from Different Skeletal Elements. Croat Medicine Journal. 48: 486-93.

Montecinos, B. & Zeni, S. (2009). Marcadores bioquímicos del remodelamiento óseo. Utilidad clínica. Acta Bioquímica Clínica Latinoamericana. 43 (2): 177-193.

Rohland , N. & Hofreiter, M. (2007). Comparison and optimization of ancient DNA extraction. BioTechniques. 42: 343-352.

Rothe, J. & Nagy, M. (2016). Comparison of two silica-based extraction methods for DNA isolation from bones. Legal Medicine: 22: 36-41.

Sambrook, J., Fritsch, E., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory (Vol. 3). NY.

Uzair, A., Rasool, N., Wasim, M. (2017). Evaluation of different methods for DNA extraction from human burnt bones and the generation of genetic profiles for identification. Medicine Science and the Law. 57 (4): 159-166.

Żołędziewska, M., Gronkiewics, S., Dobosz, T. (2002). Comparison of Various Decalcificators in Preparation of DNA From Human Rib Bones Przegląd Antropologiczny. Anthropological Review. 75: 75-80.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales