Effect of particle size and oxidant concentration in the yield of humic acids from mineral coal using response surface methodology
PDF

How to Cite

Pájaro-Payares, A. A., Espinosa-Fuentes, E. A., Colpas-Castillo, F. ., Rodriguez-Ruiz, J., Fernandez-Maestre, R., & Meza-Fuentes, E. (2017). Effect of particle size and oxidant concentration in the yield of humic acids from mineral coal using response surface methodology. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 41(160), 361–369. https://doi.org/10.18257/raccefyn.477

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

study, the effect of oxidation and the yield of humic acids extracted from a sample of Colombian mineral coal were studied by response surface methodology (RSM). The variables used were: particle size (0.063, 0.106 and 0.150 mm), concentration of the oxidizing agent (KMnO4: 0.010, 0.020 and 0.050 M) and oxidation time (30, 60 and 90 minutes). The degree of oxidation was verified by infrared spectroscopy. Oxidation increased oxygen groups in the carbonaceous matrix, mainly due to oxidation of aliphatic components. Extraction yields above 24% were obtained with 0.063 mm particle size and 0.020 M KMnO4. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.

https://doi.org/10.18257/raccefyn.477
PDF

References

Anillo-Correa, R., Colpas-Castillo, F., Meza-Fuentes, E. (2013). Aumento del contenido de ácidos húmicos en un carbón de bajo rango a través de la oxidación con aire y con peróxido de hidrogeno o ácido nítrico. Quim. Nova 2013. 36: 387-392.

Barros, B., Scarminio, I., Bruns, E (1996). Planejamento e Otimização de Experimentos (Second edition). Edit. Unicamp, Campinas, Brasil. p. 149-296.

Brunetti, G., Plaza, C., Clapp, C., Senesi, N. (2007). Compositional and functional features of humic acids from organic amendments and amended soils in Minnesota, USA. Soil. Biol. Biochem. 39: 1355-1365.

Butuzova, L., Krzton, A., Bazarova, O. (1998). Structure and properties of humic acids obtained from thermo-oxidised brown coal. Fuel. 77: 581-584.

Calemma, V., Iwansski, P., Rausa, R., Girardi, E. (1994). Changes in coal structure accompanying the formation of regenerated humic acids during air oxidation. Fuel. 73: 700-707.

Espinosa-Fuentes, E., Colpas-Castillo, F., Meza-Fuentes, E. (2017). Estudio teórico de las interacciones de dos modelos de ácidos húmicos con los cationes Al3+, Ca2+, Mg2+, Zn2+, K+ y NH4+ a un nivel de cálculo dft y un modelo de solvatación PCM. Quim. Nova. 40: 299-304.

Gomes de Melo, B., Lopes, F., Andrade, M. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62: 967-974.

Gonsalvesh, L., Marinov, S., Stefanova, M., Carleer, R., Yperman, J. (2012). Organic sulphur alterations in biodesulphurized low rank coals. Fuel. 97: 489-503.

Jones, M. & Bryan N. (1998). Colloidal properties of humic substances. Adv. Colloid. Interface Sci. 78: 1-48.

Kawasaki, S., Maie, N., Kitamura, S., Watanabe, A. (2008). Effect of organic amendment on amount and chemical characteristics of humic acids in upland field soils. Eur. J. Soil Sci. 59: 1027-1037.

Klučáková, M. & Kalina, M. (2015). Diffusivity of Cu(II) ions in humic gels–influence of reactive functional groups of humic acids. Colloids. Surf., A: Physicochem. Eng. Aspects. 483:162-170.

Klučáková, M. & Věžníková, K. (2017). Micro-organization of humic acids in aqueous solutions. J. Mol. Struc. 1144: 30-40. Kumada, K. (1987). Chemistry of Soil Organic Matter. Developments. Soil. Sci. 17: 17-33.

Kurková, M., Klika, Z., Kliková, C., Havel, J (2004). Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Chemosphere. 54: 1237-1245.

Kwiatkowska, J., Provenzano, M., Senesi, N. (2008). Long term effects of a brown coal-based amendment on the properties of soil humic acids. Geoderma. 148: 200-205.

Liang, L., Lv, J., Luo, L., Zhang, J., Zhang, S. (2011). Influences of surface-coated fulvic and humic acids on the adsorption of metal cations to SiO2 nanoparticles. Colloids. Surf., A: Physicochem. Eng. Aspects. 389: 27-32.

Lobartini. J., Gingle, A., Pape, C., Himmelsbach, D. (1992). The geochemical nature and agricultural importance of commercial humic matter. Sci. Total. Environ. 113: 1-15.

MacCarthy, P. (2001) The principles of humic substances. Soil Sci. 166: 738-751.

Martínez-Fernández, D., Arco-Lázaro, E., Bernal, M., Clemente, R. (2014). Comparison of compost and humic fertiliser effects on growth and trace elements accumulation of native plant species in a mine soil phytorestoration experiment. Ecol. Eng. 73:588-597.

Morgenthaler, S., Schumacher, M. (1999). Robust analysis of a response surface design. Chemometr. Intell. Lab. 47: 127-141. Nebbioso, A., Piccolo, A. (2012). Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Anal. Chim. Acta. 720: 77-90.

Raposo, J., Villanueva, U., Olivares, M., Madariaga, J. (2016). Determination of humic substances in sediments by focused ultrasound extraction and ultraviolet visible spectroscopy. Microchem. J. 128: 26-33.

Rashid, M., Price, N., Gracia, M., O’Shea K. (2016). Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res. 123: 153-160.

Renka, R. & Cline, K. (1984). A triangle-based C1 interpolation method. J. Math. 14: 223-238.

Ríos-León, I., Solano-Polo, C., Rodríguez-Ruiz, J., Espinosa- Fuentes, E., Meza Fuentes, E. (2017). Estudio a través de espectroscopia infrarroja y termogravimetría del efecto de la temperatura en hidrotalcitas de níquel y aluminio. Dyna. 84: 9-16.

Saldaña-Robles, A. Saldaña-Robles, N. Saldaña-Robles, A.L., Damián-Ascencio, C. Rangel-Hernández, V.H. Guerra-Sánchez, R. (2017). Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. J. Clean. Prod. 159: 425-431.

Shaker, M. & Albishri H. (2014). Dynamics and thermodynamics of toxic metals adsorption onto soil-extracted humic acid. Chemosphere. 111: 587-595.

Simeoni, M., Batts, B., McRae, C. (2003). Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite. Appl. Geochem. 18: 1507-1515.

Skybová, M., Turčániová, Ľ., Čuvanová, S., Zubrik, A., Hredzák, S., Hudymáčová, Ľ. (2007). Mechanochemical activation of humic acids in the brown coal. J. Alloy. Compd. 434: 842-845.

Stevenson, F. (1994). Humus Chemistry: Genesis, Composition, Reactions. First edition. New York: John Wiley & Sons, United States. p. 1-19.

Tang, K., Escola M., Ooi G., Kaarsholm K., Bester K., Andersen H. (2017). Influence of humic acid addition on the degradation of pharmaceuticals by biofilms in effluent wastewater. Int J Hyg Envir Heal. 220: 604-610.

Taraba, B. (1990). Reversible and irreversible interaction of oxygen with coal using pulse flow calorimetry. Fuel. 69: 1191-1199.

Tejeda-Agredano, M., Mayer, P., Ortega-Calvo, J. (2014). The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ. Pollut. 184: 435-442.

Van Krevelen D.W. (1993). Coal: Typology–Physics–Chemistry- Constitution. Edit. Elsevier, Amsterdam. p. 249-292.

Versan-Kok, M. (2001). An Investigation into the combustion curves of lignites. J. Thermal. Anal. Calorimetry. 64: 1319-1323.

Versan-Kok, M. (2012). Simultaneous thermogravimetry–calorimetry study on the combustion of coal samples: Effect of heating rate. Energy. Convers. Manage. 53: 40-44.

Wijaya, N. & Zhang, L. (2012). Generation of ultra-clean fuel from Victorian brown coal–Synchrotron XANES study on the evolution of sulphur in Victorian brown coal upon hydrothermal upgrading treatment and thermal pyrolysis. Fuel. 99: 217-225.

Wood, G., Kehn, T., Carter, M., Culbertson, W. (1983). Coal Resource Classification System of the U.S. Geological Survey, Geological Survey: Denver, United States.

Yang, K., Miao, G., Wu. W., Lin, D., Pan, B., Wu, F., Xing, B. (2015). Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere. 138: 657-663.

Zhang, S., Yuan, L., Li, W., Lin, Z., Li, Y., Hu, S., Zhao B. (2017). Characterization of pH-fractionated humic acids derived from Chinese weathered coal. Chemosphere. 166:334-342.

Zhiyuan, Y., Liang, G., Pan, R. (2012). Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts. Int. J. Mining. Sci. Tech. 22: 75-78.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2017 Journal of the Colombian Academy of Exact, Physical and Natural Sciences