Abstract
A description of how everyone does abstractions to develop a mathematical model is presented; as well as the ability to describe the behaviour of nature processes dynamic when there are external perturbations. The aim of this work is to find the balance equation, starting from the classical Liouville equation on the microscopic scale until the balance equations on a macroscopic scale or Navier-Stokes equations. By dividing physical quantities such as velocity in two parts, one of which related to the average value and the other one with the fluctuation; it is possible to jump from one scale to another and reduces complexity. At this point, the complexity is constructed from simple units; therefore, the models are considered reality abstractions based on a mathematical equation formulated at different levels, both on time and space; as consequence, nature takes its shape due to the external influence, without forget the nature laws, by modifying the shape, adapting and looking for the less energy demand. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. All rights reserved.References
Bell, A. D. (1986). The simulation of branching patterns in modular organisms. Philos. Trans. Royal Society London, Ser. B, 313: 143-169.
Bejan, A. (2000). Shape and Structure, from Engineering to Nature. Cambridge University Press.
Bejan, A. (1997). Advanced Engineering Thermodynamics. John Wiley and Sons.
Bejan, A. (2005). The Constructal Law of Organization in Nature: Tree – Shaped Flow and Body Size. The Journal of Experimental Biology, 208: 1677-1686.
Bhattacharya, A., Purohit, P. (2004). Predicting reaction rates for non- atalytic fluid–solid reactions in presence of structural changes in the solid phase. Chemical Engineering Journal, 102 (2): 141-149
Byron Bird R., Warren E. Stewart, E. N. Lightfoot, (2002). Fenómenos de Transporte. United State: John Wiley & Sons.
Callen H. B., Welton, T. A. (1951), Irrevarsibility and Genralized Noise. Physical Review 83: 1.
Chejne, F., Hernández, J. P. W., Florez W.F. and Hill, A.F.J. (2000). Modelling and simulation of time-dependent coal combustion processes in stacks. Fuel 79: 987-997.
Chejne, F., Hernández, J. P. (2002). Modelling and Simulation of Coal Gasification Process in Fludized Bed. Fuel, v. 81 p.1687-1702.
Chejne, F., Ragimova, T., Florez, W.F., Hernández, J.P. (2002). Theoretical Model for heat transfer in the single crystal making. Revista de La Facultad de Ingeniería Universidad de Antioquia. ISSN: 01202064 v. Junio, (26) p.79-89.
Chejne, F., Lopera, E., Londoño, C.A. (2011). Modelling and simulation of a coal gasification process in pressurized fluidized bed. Fuel; 90: 399-411.
Chejne, F., Macías, A., Estrada, D., Velasquez, H. I., Londoño, C. A. (2011), Radiation model for predicting temperature evolution in solar cooker, DYNA ISSN 0012-7353,Nro 166, pp 68-74, Medellin, Abril.
Chejne F., F. Moukalled, C. A. Gómez (2013). A Simple Derivation of Crooks Relation; International Journal of Thermodynamics (IJoT), ISSN 1301-9724/e-ISSN 2146-1511, Vol. 16 (No 3), pp 97-101.
Chejne, F., Camargo. D.A., Pabón E., CarrascoMarín, F. (2015). Effect on mass transference phenomena by textural change inside monolithic carbon aerogels. Editor and place of publication: 14321181, 09477411 Heat Mass Transfer, Germany, January.
De Groot S. R. (1968). Termodinámica de los Procesos Irrever-sibles. Madrid: Alhambra, p 268.
Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat; Annalen der Physik 17: 549-560.
Eran, S., M. Michael and L. S. Harry, (1986). Philosophical Transactions of the Royal Society of London, Series B, 313, pp. 143-169.
Español, P. (2013). The Micro-Meso connection also known as Non- quilibrium Statistical Mechanics also known as The Theory of Coarse- raining. Lecture notes at UAM, Madrid, España, Noviembre.
Falola, A., Borissova, A., Wang, X. Z. (2013). Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels. Computers & Chemical Engineering, 56: 1-11.
Flórez, W., H. Power, H., F. Chejne, F. (2000). Multi-domain dual reciprocity BEM approach for the Navier-Stokes system of equations Communications in Numerical Methods in Engineering ISSN: 1069-8299 Wiley v.16 fasc. p.671-681.
Flórez Escobar, W., H. Power, H., F. Chejne, F. (2000). Conservative interpolation for the boundary integral solution of the Navier-Stoker equations. Computational v.26 fasc. p.507-513.
Flórez, W., H. Power, H., F. Chejne, F. (2002). Método de elementos de frontera multi-dominio para problemas no newtonianos y no isotérmicos. In Matemáticas Enseñanza Universitaria.
Flórez, W., H. Pawer, H. F. Chejne, F. (2002). Numerical Solution of Thermal Convection Problems Using the Multi-domain Boundary Element Method. Numerical Methods For Partial Differential Equations, ISSN: 0749-159X Wiley v.18 fasc.3 p.469-482.
García-Labiano, F., Abad, F. A., de Diego, I. F., Gayán, P., Adánez, J. (2002). Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 57 (13): 2381-2393.
Gardiner, C.W. (2004). Handbook of Stochastic Methods; Springer, Germany, 3rd Edition.
Georgakis, C., Chang, C.W., Szekely, J. (1979). A changing grain size model for gas-solid reactions. Chemical Engineering Science, 34 (8): 1072-1075.
Gibb, M. (1960). Elementary principles in Statically Mechanics, Dover, New York.
Granados, D. A., Chejne, F., Mejía, J.M. (2015). Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns: 03062619 Applied Energy, Amsterdam – Holland November.
Granados, D. A., Chejne, F., Mejía, J. M., Gómez, C.A. Berrío, A., Jurado, W.J. (2013). Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln; Energy 1-11.
Hoyos, B.A., Chejne, F. (2015). Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium. Rev. Fac. Ing. Univ. Antioquia, Medellín – Colombia, Junio.
Haase, R. (1990). Thermodynamics of Irreversible Processes. New York: Dover, p 513.
Hines, A., Maddox, R. (1987). Transferencia de Masa: Funda-mentos y Aplicaciones. México: Prentice Hall, p 568.
Jaberi, F. A., Colucci, P. J., James, S., Givi P., Pope, S. B. (1999). Filtered mass density function for large-eddy simulation of turbulent reacting flow. J. Fluid Mech. vol 401, pp 85-121.
Kurchan, J. (2005). In and Out Equilibrium. Nature, Vol. 433, 20. Landau, L. D. E. M. Lifshitz. (1969). Física Estadística, Reverté, Barcelona.
Maya, J.C., Chejne, F. (2016). Novel Model For Non Catalytic Solid-Gas Reactions With Structural Changes By Chemical Reaction And Sintering. Chemical Engineering Science, pp. 258-268.
Mejía, J. M., Chejne, F., Smith, R., Rodríguez, L.F., Fernández, O., Dyner, I. (2005). Propuestas Metodológicas para el diseño de aspas de turbinas de viento de Eje horizontal. Rev. Energética Universidad Nacional de Colombia, 33, Julio. ISSN 0120-9833.
Mejía, J. M. (2012). Scalar transport and mixing using large eddy simulation. Tesis doctorado, Facultad de Minas, Universidad Nacional de Colombia.
Mejía, J.M., Sadiki, A., Molina, A., Chejne, F., Pantangi, P. (2015). Large Eddy Simulation of the mixing of a passive scalar in a high-Schmidt turbulent jet. Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, January.
Mejía, J. M., Chejne, F., Molina, A., Sadiki, A. (2015). Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach, Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, October.
Myung, I.J. (2000). The Importance of Complexity in Model Selection. Journal of Mathematical Psychology 44: 190-204.
Moore, J. (2015). Pragmatism, mathematical models and the scientific ideal of prediction and control. Behavioural Processes 114: 2-13.
Öttinger, H.C. (1996). Stochastic Process in Polymeric Fluid. Springer, Germany.
Kubo, R. (1966). The Fluctuation-Dissipation theorem, Rep. Prog. Phys. 29: 255.
Pope, S. B. (1990). Computations of turbulent combustion: Progress and challenges. Proceeding of the Combustion Institute; 23: 591-612.
Prigogine, I. G. Nicolis. (1987). La Estructura de lo Complejo. Editorial Alianza.
Prusinkiewicz, P. (1998). Modeling of spatial structure and development of plants: a review. Scientia Horticulturae, Volume 74, Issues 1–2, 30 April, Pages 113-149
Reichl, L.E. (1998). A Modern Course in Statistical Physics”, John Wiley and sons, Inc., “2nd edition.
Rivera, A., Chejne, F. (2004). Non-linear phenomena in thermo-acoustic engines. Revista Journal of Non-Equilibrium Thermodynamics, ISSN 0340-0204, Vol. 29, No 3, p. 209-220.
Serra, R., Andretta, M., Company M., and Zanarini, G. (1986). Introduction To The Physics of Complex Systems. Pergamon press, Headington Hill Hall, Oxford, England.
Sharon, E. M. Marden M and H. L. Swinney, H.L. (2005). Flores y Hojas Onduladas. Investigación y Ciencia, 344, pp.70-77, Mayo.
Stachel, J. (1998). Einstein’s Miraculous Year; edited and introduced by Princeton University Press, USA.
Stevens, P.S. (1974). Patterns in Nature,” Little, Brown and Co., Boston. P 256.
Schindler, M. (2010). A numerical test of stress correlation in fluctuating hydrodynamics. Chemical Physics 375: 327-336.
Szekely, J., Propster, M. (1975). A structural model for gas solid reactions with a moving boundary—VI: The effect of grain size distribution on the conversion of porous solids. Chemical Engineering Science, 30 (9): 1049-1055.
Thompson, D. W. (1917). On growth and form. Cambridge [Eng.] University press.
Tolman, R. (1979). The Principles of Statistical Mechanics. Dover, New York.
Turing, A. (1952). On the Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, 327, pp. 37-52.
Tyagi, M. (2010). Probability Density Function approach for modeling multi-phase flow in porous media. Dissertation ETH Zurich No. 18997.
Velásquez J.E., Chejne F. (2003). Estudio de los fenómenos acoplados en transporte y transferencia: Aprovechamiento por la Ingeniería Química. Ingeniería Química, No. 398.
Ye, R., C. Xiang, J. Lin, Z. Peng, K., Yan, H.Z., Tour, J. M. (2013). Coal as an abundant source of graphene quantum dots. Nature Communications, 4: 2943.
Declaration of originality and transfer author's rights
The authors declare:
- The published data and reference materials have been duly identified with their respective credits and have been included in the bibliographic notes and citations that have been so identified and that should it be required, I have all releases and permissions from any copyrighted material.
- All material presented is free from any copyright and that I accept full legal responsibility for any legal claims relating to copyrighted intellectual property, fully exonerating from responsibility the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
- This work is unpublished and will not be sent to any other journal while waiting for the editorial decision of this journal. I declare that there is no conflict of interest in this manuscript.
- In case of publication of this article, all author´s rights are transferred to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, and so cannot be reproduced in any form without the express permission of it.
- By means of this document, if the article is accepted for publication by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, the Revista assumes the right to edit and publish the articles in national and international indices or data bases for academic and scientific use in paper, electronic, CD-ROM, internet form either of the complete text or any other known form known or to be known and non-commercial, respecting the rights of the authors.
Transfer of author rights
In case the article is approved for publication, the main author in representation of himself and his co-authors or the main author and his co-authors must cede the author rights of the corresponding article to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, except in the following cases:
The authors and co-authors will retain the right to revise, adapt, prepare derived works, oral presentations, and distribution to some colleagues of reprints of their own published work, if the corresponding credit is given to the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. It is also permissible to publish the title of the work, summary, tables, and figures of the work in the corresponding web sites of the authors or their employers, also giving credit to the Revista.
If the work has been realized under contract, the author’s employer has the right to revise, adapt, prepare derivative works, reproduce, or distribute in hard copy the published work, in a secure manner and for the exclusive use of his employees.
If the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales were approached for permission by a third party for using, printing, or publishing specifically articles already published, the Revista must obtain the express permission of the author and co-authors of the work or of the employer except for use in classrooms, libraries, or reprinted in a collective work. The Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales reserves the possible use in its front cover of figures submitted with the manuscripts.
No other right, other than the author’s right, can be claimed by the Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.