THE ROOT SYSTEM OF THE WHITE MANGROVE (AVICENNIA GERMINANS), AN EXAMPLE OF MORPHOLOGICAL AND ANATOMICAL ADAPTATIONS OF SPERMATOPHYTES TO UNFAVORABLE ECOLOGICAL CONDITIONS
PDF (Español (España))

How to Cite

Schnetter, M.-L. (2024). THE ROOT SYSTEM OF THE WHITE MANGROVE (AVICENNIA GERMINANS), AN EXAMPLE OF MORPHOLOGICAL AND ANATOMICAL ADAPTATIONS OF SPERMATOPHYTES TO UNFAVORABLE ECOLOGICAL CONDITIONS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 26(98), 111–126. https://doi.org/10.18257/raccefyn.26(98).2002.2757

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Avicennia germinans (L.) Stearn, a New World mangrove, grows in saline and oxygen-deficient soils. The root system architecture makes it possible to form absorbing roots in a position from which they may reach substrates, soil, or water with favorable salt concentrations. Pneumatophores and large gas spaces within the roots supply oxygen to the root cells. The formation of aerenchyma considerably reduces the number of living, oxygen-consuming cells. Oxygen loss from the root to the substrate is reduced by the formation of cork layers that may also surround the apical meristems. Thus, the absorption of ions is limited to growing root tips and rootlets without secondary thickening.

https://doi.org/10.18257/raccefyn.26(98).2002.2757

Keywords

Avicennia germinans | root system | aerenchyma | exodermis | endodermis
PDF (Español (España))

References

Allaway, W.G., M. Curran, L.M. Hollington, M.C. Ricketts & N.J. Skelton. 2001. Gas space and oxygen exchange in roots of Avicennia marina (Forssk.) Vierh. var. australica (Walp.) Moldenke ex N.C. Duke. the Grey Mangrove. Wetl. Ecol. Manag. 9. 211-218.

Andersen, F.O. & E. Kristensen. 1988. Oxygen microgradients in the rhizosphere of the mangrove Avicennia marina. Mar. Ecol. Prog. Ser. 44. 201-204.

Armstrong, W., R. Brandle & M.B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 43. 307-358.

Ashford, A.E. & W.G. Allaway. 1995. There is a continuum of gas space in young plants of Avicennia marina. Hydrobiologia 295. 5-11.

Baylis, G.T.S. 1950. Root systems of the New Zealand mangrove. Trans. R. Soc. N.Z. 78, 509-514.

Becker, E. 1983. Fluoreszenzmikroskopie. 71 pp. Leitz, Wetzlar.

Bundrett, M.C., O.E. Enstone & C.A. Peterson. 1988. A berberine-aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146, 133-142.

Chapman, V.J. 1944. 1939 Cambridge University Expedition to Jamaica. III. The morphology of Avicennia nitida Jacq. and the function of its pneumatophores. J. Lin. Soc. Bot. (London) 52, 487-533.

Chapman, V.J. 1976. Mangrove vegetation. 447 pp. J. Cramer, Vaduz.

Clarkson, O.T. & A.W. Robards. 1975. The endodermis, its structural development and physiological role. En: Torrey, J. & O.T. Clarkson (eds.). The development and function of roots. pp. 415-436. Academic Press, London.

Drew, M.C. 1987. Function of root tissues in nutrient and water transport. En: Gregory, P.J., J.V. Lake & O.A. Rose (eds.). Root development and function. pp. 71-101. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.

Drew, M.C. & L.H. Stolzy. 1996. Growth under oxygen stress. En: Waisel, Y., A. Eshel & U. Kafkafi (eds.). Plant roots. The hidden half (2nd edition) pp. 397-414. Marcel Dekker, Inc., New York, Basel, Hong Kong.

Ensminger, I. 1997. Support of natural regeneration of degraded mangrove vegetation. Implications of hydraulic works in the Clarín Channel, Ciénaga Grande de Santa Marta, Colombia. 47 pp. TÖB F-II/45. GTZ, Eschborn.

Enstone, O.E. & C.A. Peterson. 1992. The apoplastic permeability of root apices. Can. J. Bot. 70, 1502-1512.

Eshel, A. & Y. Waisel. 1996. Multiform and multifunction of various constituents of one root system. En: Waisel, Y., A. Eshel & U. Kafkafi (eds.). Plant roots. The hidden half (2nd edition) pp. 175-192. Marcel Dekker, Inc., New York, Basel, Hong Kong.

Gerlach, O. 1977. Botanische Mikrotechnik. Eine Einführung. 311 pp. Georg Thieme Verlag, Stuttgart.

Geissler, N., R. Schnetter & M.L. Schnetter. The pneumathodes of Laguncularia racemosa: Little known rootlets with a surprising structure, and notes on a new fluorescent dye for lipophilic substances. En preparación.

Giraldo H., R., J. Martínez C., L.H. Hurtado T., S. Zea & E.R. Madera R. 1995. Análisis de clasificación de series temporales: el caso de la salinidad en la Ciénaga Grande de Santa Marta, Colombia. An. Inst. Invest. Mar. Punta Betín 24, 123-134.

Ish-Shalom-Gordon, N. & Z. Dubinsky. 1992. Ultrastructure of the pneumatophores of the mangrove Avicennia marina. S. Afr. J. Bot. 58, 358-362.

Jackson, M.B. & W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274-287.

Lawton, J.R., A. Todd & D.K. Naidoo. 1981. Preliminary investigations into the structure of the roots of the mangroves, Avicennia marina and Bruguiera gymnorrhiza, in relation to ion uptake. New Phytol. 88, 713-722.

Lugo, A.E. & S.C. Snedaker. 1974. The ecology of mangroves. Ann. Rev. Ecol. Syst. 5, 39-64.

Marschner, H., V. Römheld & H. Ossenberg-Neuhaus. 1982. Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z. Pflanzenphysiol. 105, 407-416.

McKee, K. 1996. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia. Tree Physiol. 16, 883-889.

McKee, W., Jr. & M.R. McKevlin. 1993. Geochemical processes and nutrient uptake by plants in hydric soils. Environ. Toxicol. Chem. 12, 2197-2207.

Moon, G.J., B.F. Clough, C.A. Peterson & W.G. Allaway. 1986. Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes. Aust. J. Plant Physiol. 13, 637-648.

Munns, R. & A. Termaat. 1986. Whole-plant responses to salinity. Aust. J. Plant Physiol. 13, 143-160.

O'Leary, J. 1996. Ecophysiology of roots of halophytes. En: Waisel, Y., A. Eshel & U. Kafkafi (eds.). Plant roots. The hidden half (2nd edition) pp. 845-858. Marcel Dekker, Inc., New York, Basel, Hong Kong.

Peirson, D.R. & Dumbroff, E.B. 1969. Demonstration of a complete Casparian strip in Avena and Ipomoea by a fluorescent staining technique. Can. J. Bot. 47, 1869-1871.

Perdomo, L., I. Ensminger, L.F. Espinosa, C. Elster, M. Wallner-Kersanach & M.L. Schnetter. 1998. The mangrove ecosystem of the Ciénaga Grande de Santa Marta (Colombia): Observations on regeneration and trace metals in sediment. Mar. Pollut. Bull. 37, 393-403.

Perumalla, C.J., C.A. Peterson & D.E. Enstone. 1990. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot. J. Linn. Soc. 103, 93-112.

Peterson, C.A., M.E. Emanuel & C. Wilson. 1982. Identification of a Casparian band in the hypodermis of onion and corn roots. Can. J. Bot. 60, 1529-1535.

Peterson, C.A. & D.E. Enstone. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plantarum 97, 592-598.

Peterson, C.A. & C.J. Perumalla. 1990. A survey of angiosperm species to detect hypodermal Casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot. J. Lin. Soc. 103, 113-125.

Reinhardt, D.H. & T.L. Rost. 1995. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ. Exp. Bot. 35, 563-574.

Scholander, P.F. 1968. How mangroves desalinate seawater. Physiol. Plantarum 21, 251-261.

Scholander, P.F., L. van Dam & S.J. Scholander. 1955. Gas exchange in the roots of mangroves. Am. J. Bot. 42, 92-98.

Schreiber, L., K. Hartmann, M. Skrabs & J. Zeier. 1999. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50, 1267-1280.

Serrano Díaz, L.A., L. Botero, P. Cardona & J.E. Mancera-Pineda. 1995. Estructura del manglar en el delta exterior del Río Magdalena-Ciénaga Grande de Santa Marta, una zona tensionada por alteraciones del equilibrio hídrico. An. Inst. Invest. Mar. Punta Betín 24, 135-164.

Sobrado, M.A. 2001. Effect of high external NaCl concentration on the osmolality of xylem sap, leaf tissue and leaf glands secretion of the mangrove Avicennia germinans (L.) L. Flora 196, 63-70.

Steudle, E. 2000. Water uptake by plant roots: an integration of views. Plant Soil 226, 45-56.

Steudle, E. & C.A. Peterson. 1998. How does water get through roots? J. Exp. Bot. 49, 775-788.

Thibodeau, F.R. & Nickerson N.H. 1986. Differential oxidation of mangrove substrate by Avicennia germinans and Rhizophora mangle. Am. J. Bot. 73, 512-516.

Tomlinson, P.B. 1986. The botany of mangroves. 413 pp. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney.

Troll, W. 1967. Vergleichende Morphologie der höheren Pflanzen. 1. Band. 3. Teil: Wurzel und Wurzelsysteme. pp. 2007-2736. Koenigstein: Taunus.

Troll, W. & O. Dragendorff. 1931. Über die Luftwurzeln von Sonneratia Linn. f. und ihre biologische Bedeutung. Mit einem rechnischen Anhang von Hans Fromherz. Planta 13, 311-473.

Volkmar, K.M., Y. Hu & H. Steppuhn. 1998. Physiological responses of plants to salinity: A review. Can. J. Plant Sci. 78, 19-27.

Zamski, E. 1979. The mode of secondary growth and the three-dimensional structure of the phloem in Avicennia. Biol. Gaz. 140, 67-76.

Zeier, J., A. Goll, M. Yokoyama, I. Karahara & L. Schreiber. 1999a. Structure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species. Plant Cell Environ. 22, 271-279.

Zeier, J., K. Ruel, U. Ryser & L. Schreiber. 1999b. Chemical analysis and immunolocalization of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Planta 209, 1-12.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.