Abstract
The use of materials in contemporary technology heavily relies on their nanostructural, physical, and chemical attributes. The specific domain within technology referred to as spintronics, encompasses the realm of spin transport electronics. Spintronics delves into the electron spin, its inherent magnetic moment and fundamental charge, and the manipulation of these intrinsic characteristics to develop solid-state devices. In metallic systems, spintronics encloses phenomena like spin-charge coupling, which includes ferro- and ferrimagnetic materials, giant and colossal magnetoresistive materials, and metallic spins. Among the most versatile materials in the evidence of exotic properties, one of the most representative families is the so-called perovskites, widely studied in recent years including their properties in solar cell technology. Here, we present some crystallographic, compositional, morphological, optical, and magnetic attributes of the Ca2TiFeO6 double perovskite material, synthesized by the standard solid-state reaction method from high-purity precursor oxides. Rietveld refinement of experimental X-ray diffraction data revealed that this material crystallizes in a monoclinic perovskite-type structure with alternating ordering of Ti-Fe cations along the three crystallographic axes. The strongly granular surface character of the Ca2TiFeO6 materials was observed in the images from a scanning electron microscope; the electron X-ray energy dispersive spectra revealed a close match of sample composition to that expected from their chemical formula. The diffuse reflectance spectrum showed the semiconductor feature of the material with a 1.02 eV bandgap. The magnetic characterization in the 50 K < T < 335 K regime and the applied fields up to 1 kOe showed the ferromagnetic response of the material over the entire temperature range measured. These properties are promising in the spintronics industry for devices where the same material serves to process, record, read, and erase information as in the spin transistors.
Keywords
References
Aleksandrov, K.S. (1978). Mechanisms of the ferroelectric and structural phase transitions. Structural distortions in perovskites. Ferroelectrics, 20, 61-67.
Bhalla, A.S., Guo, R., Roy, R. (2000). The perovskite structure - A review of its role in ceramic science and technology. Materials Research Innovations, 4(1), 3-26.
Cavichini, A. S., Orlando, M. T., Depianti, J. B., Passamai Jr, J. L., Damay, F., Porcher, F., Granado, E. (2018). Exotic magnetism and spin-orbit-assisted Mott insulating state in a 3d-5d double perovskite. Physical Review B, 97(5), 054431.
Cuervo-Farfán, J. A., Aljure-García, D. M., Cardona, R., Arbey-Rodríguez, J., Landínez-Téllez, D. A., Roa-Rojas, J. (2017). Structure, ferromagnetic, dielectric and electronic features of the LaBiFe2O6 material. Journal of Low Temperature Physics, 186, 295-315.
Cuervo-Farfán, J.A., Parra-Vargas, C.A., Viana, D.S.F., Milton, F.P., García, D., Landínez-Téllez, D.A., Roa-Rojas, J. (2018). Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic. Journal of Materials Science: Materials in Electronics, 29, 20942-20951.
Deluque-Toro, C.E., Vergara, V.E., Gil-Rebaza, A.V., Landínez-Téllez, D. A., Roa-Rojas, J. (2023). Ground state structural, lattice dynamic, thermodynamic and optical properties of the Ba2CaMoO6 ordered perovskite. Physica B: Condensed Matter, 666, 415132.
Eng, H.W., Barnes, P.W., Auer, B.M., Woodward, P.M. (2003). Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. Journal of Solid State Chemistry, 175(1), 94-109.
Glazer, A.M. (1972). The classification of tilted octahedra in perovskites. Acta Crystallographica B, 28, 3384-3392.
Golubeva, O.Y., Semenov, V. G., Volodin, V.S., Gusarov, V.V. (2009). Structural stabilization of Fe4+ ions in perovskite-like phases based on the BiFeO3-SrFeOₓ system. Glass Physics and Chemistry, 35, 313-319.
Hayashi, N., Yamamoto, T., Kageyama, H., Nishi, M., Watanabe, Y., Kawakami, T., Matsushita, Y., Fujimori, A., Takano, M. (2011). BaFeO3: A ferromagnetic iron oxide. Angewandte Chemie International Edition, 50, 12547-12550.
Jaramillo-Palacio, J.A., Muñoz-Pulido, K.A., Arbey-Rodríguez, J., Landínez-Téllez, D.A., Roa-Rojas, J. (2021). Electric, magnetic and microstructural features of the La2CoFeO6 lanthanide ferrocobaltite obtained by the modified Pechini route. Journal of Advanced Dielectrics, 11(03), 2140003.
Jiang, S., Hu, T., Gild, J., Zhou, N., Nie, J., Qin, M., Harrington, T., Veccio, K., Luo, J. (2017). A new class of high-entropy perovskite oxides. Scripta Materialia, 142, 116-120.
Kieslich, G., Sun, S., Cheetham, A.K. (2014). Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chemical Science, 5(12), 4712-4715.
King, G. & Woodward, P.M. (2010). Cation ordering in perovskites. Journal of Materials Chemistry A, 20(28), 5785-5796.
Kubelka, P., Munk, F. (1931). An article on optics of paint layers. Z. Technical Physics, 12, 593.
Kumar, V., Sharma, S. K., Sharma, T. P., Singh, V. (1999). Band gap determination in thick films from reflectance measurements. Optical Materials, 12, 115.
Landínez-Téllez, D.A., Martínez-Buitrago, D., Cardona C., R., Barrera, E. W., Roa-Rojas, J. (2014). Crystalline structure, magnetic response and electronic properties of RE2MgTiO6 (RE = Dy, Gd) double perovskites. Journal of Molecular Structure, 1067, 205-209.
Lufaso, M.W. & Woodward, P.M. (2001). Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallographica Section B, 57(6), 725-738.
Lufaso, M.W. & Woodward, P.M. (2004). Jahn–Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystallographica B, 60, 10-20.
Mao, Y., Zhou, H., Wong, S. S. (2010). Synthesis, properties, and applications of perovskite-phase metal oxide nanostructures. Matererial Matters, 5(2), 50.
Mohebbi, E., Pavoni, E., Pierantoni, L., Stipa, P., Zampa, G.M., Laudadio, E., Mencarelli, D. (2024). Band gap and THz optical adsorption of SnSe and SnSe2 nanosheets on graphene: Negative dielectric constant of SnSe. Results in Physics, 57, 107415.
Ochoa-Burgos, R., Martínez, D., Parra-Vargas, C. A., Landínez-Téllez, D. A., Vera-López, E., Sarmiento-Santos, A., Roa-Rojas, J. (2012). Magnetic and ferroelectric response of Ca2TiMnO6 manganite-like perovskite. Revista Mexicana de Física S, 58(2), 44–46.
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. (1993). TYPIX standardized and crystal chemical characterization of inorganic structure types. In Gmelein, Handbook of Inorganic and Organometallic Chemistry, 8th ed. Springer.
Roa-Rojas, J., Cuervo-Farfán, J. A., Deluque-Toro, C. E., Landínez-Téllez, D. A., Parra-Vargas, C. A. (2022). Rare-earth ferrobismuthites: Ferromagnetic ceramic semiconductors with applicability in spintronic devices. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 9, 628-645.
Sorescu, M., Xu, T., Hannan, A. (2011). Initial stage growth mechanism of LaFeO3 perovskite through magnetomechanical ball-milling of lanthanum and iron oxides. American Journal of Materials Science, 1, 57.
Tan, Y.-Q., Meng, Y., Yong-Mei, H. (2013). Structure and colossal dielectric permittivity of Ca2TiCrO6 ceramics. Journal of Physics D: Applied Physics, 46, 015303.
Toby, B.H., Von Dreele, R. B. (2013). GSAS-II: The genesis of a modern open-source all-purpose crystallography software package. Journal of Applied Crystallography, 46, 544-549.
Wondratschek, W. (2006). International Tables for Crystallography, Vol. A, Chapter 8.3, 732-740. Springer, Dordrecht.
Woodward, P.M. (1997). Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica B, 53, 32-43.
Yildirim, C., Devoize, F., Geffroy, P.-M., Dumas-Bouchiat, F., Bouclé, J., Vedraine, S. (2022). Electrical and optical properties of CaTi1-yFeyO3-δ perovskite films as interlayers for optoelectronic applications. Materials, 15, 6533.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales