Dynamic response of the magnetization of a magnetite nanoparticle to an alternating magnetic field
PDF (Español (España))

How to Cite

Roa, N., & Restrepo, J. (2024). Dynamic response of the magnetization of a magnetite nanoparticle to an alternating magnetic field. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 48(187), 271–280. https://doi.org/10.18257/raccefyn.2602

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We conducted a micromagnetic study of the dynamic behavior of the magnetization of a magnetite nanoparticle before an oscillating external magnetic field to contribute to the knowledge of the conditions under which the magnetization of a magnetic particle is capable of following a magnetic field at a certain frequency and amplitude and, thus, differentiate dynamically ordered and disordered states. This, in turn, allows defining the conditions for the establishment of magnetic hysteresis, relevant in the field of magnetic hyperthermia of nanoparticles, where hysteresis losses play a fundamental role in heat release. The methodology was based on the solution of the Landau-Lifshitz-Gilbert differential equation together with a Hamiltonian containing exchange terms, magnetocrystalline anisotropy, the Zeeman effect, and demagnetizing energy. Our results revealed that there are particular microstates in the angular energy landscape and their contributions in a narrow region of angles that the magnetization vector forms with the main direction of the external field, characterized by a high degree of magnetic frustration of a chaotic nature.

https://doi.org/10.18257/raccefyn.2602

Keywords

Magnetic nanoparticles | hyperthermia | alternating magnetic field | dynamic phase transition
PDF (Español (España))

References

Beg, M., Lang, M., & Fangohr, H. (2021). Ubermag: Toward more effective micromagnetic workflows. IEEE Transactions on Magnetics

Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thierry, N. M., Fangohr, H. (2021). Using jupyter for reproducible scientific workflows. Computing in Science & Engineering, 23(2), 36-46.

Caizer, C. (2020). Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials, 11(1), 40.

Coey, J. M. (2010). Magnetism and magnetic materials. Cambridge University Press.

Guimaraes, A. P., & Guimaraes, A. P. (2009). Principles of nanomagnetism (Vol. 7). Springer.

Korniss, G., White, C., Rikvold, P., Novotny, M. (2000). Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kineticising model in an oscillating field. Physical Review E, 63(1), 016120.

Kronmuller, H. (2007). Handbook of magnetism and advanced magnetic materials (Vol. 1). Wiley.

Ling Yi., Tang X., Wang F., Zhou X., Wang R., Deng L., Shang T., Liang B., Li P., Ran H., Wang Z., Hu B., Li C., Zuo G., Zheng Y. (2017). Highly efficient magnetic hyperthermia ablation of tumors using injectable polymethylmethacrylate–fe 3 o 4. RSC Advances, 7(5), 2913-2918.

Logan, J. D. (2006). A first course in differential equations. Springer.

Lozano-Ocaña, Y., Tubón-Usca, I., Vaca-Altamirano, G., Tubón-Usca, G. (2022). Métodos de obtención y aplicación de nanopartículas magnéticas en el tratamiento y diagnóstico del cáncer: una revisión. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(178), 7-26.

Mahalingam, S. S., Manikandan, B., Arockiaraj, S. (2019). Review–micromagnetic simulation using oommf and experimental investigations on nano composite magnets. In Journal of Physics: Conference Series, 1172, 012070.

Mandea, M., Korte, M. (2010). Geomagnetic observations and models (Vol. 5). Springer.

Maniotis, N., Nazlidis, A., Myrovali, E., Makridis, A., Angelakeris, M., Samaras, T. (2019). Estimating the effective anisotropy of ferromagnetic nanoparticles through magnetic and calorimetric simulations. Journal of Applied Physics, 125(10), 103903.

Mathews, S. A., Ehrlich, A. C., Charipar, N. A. (2020). Hysteresis branch crossing and the stoner–wohlfarth model. Scientific Reports, 10(1), 15141.

Nguyen, M. D., Tran, H.-V., Xu, S., Lee, T. R. (2021). Fe3o4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 11301.

Osaci, M. (2021). Influence of damping constant on models of magnetic hyperthermia. Acta Physica Polonica A, 139(1), 51-55.

Park, H., Pleimling, M. (2013). Dynamic phase transition in the three-dimensional kineticising model in an oscillating field. Physical Review E, 87(3), 032145.

Rabias I., Tsitrouli D., Karakosta E., Kehagias T., Diamantopoulos G., Fardis M., Stamopoulos D., Maris TG., Falaras P., Zouridakis N., Diamantis N., Panayotou G., Verganelakis DA., Drossopoulou GI., Tsilibari EC., Papavassiliou G. (2010). Rapid magnetic heating treatment by highly charged maghemite nanoparticles on Wistar rats exocranial glioma tumors at microliter volume. Biomicrofluidics, 4(2), 24111.

Roa, N., Restrepo, J. (2023). Micromagnetic approach to the metastability of a magnetite nanoparticle and specific loss power as function of the easy-axis orientation. Physchem, 3(3), 290-303.

Salimi, M., Sarkar, S., Hashemi, M., Saber, R. (2020). Treatment of breast cancerbearing Balb/c mice with magnetic hyperthermia using dendrimer functionalized iron oxide nanoparticles. Nanomaterials, 10(11), 2310.

Usov, N. (2010). Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. Journal of Applied Physics, 107(12), 123909

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales