EXACTLY SOLVABLE MODELS IN STATISTICAL MECHANICS OF COULOMB SYSTEMS
PDF (Español (España))

How to Cite

Vargas, R. A. (2023). EXACTLY SOLVABLE MODELS IN STATISTICAL MECHANICS OF COULOMB SYSTEMS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(142), 495–504. https://doi.org/10.18257/raccefyn.37(142).2013.2536

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Using impedance spectroscopy measurements in the radio-frequency range in two types of proton conducting materials with disordered structure, ionic crystals with disordered hydrogen bonds (MH2PO4, M = NH4, K) and solid polymers based on poly (vinyl alcohol) (PVOH), the proton dynamics have been investigated. They display similar characteristics of their complex conductivity, permittivity and electric modulus spectra. Both materials show an Arrhenius-type thermally activated dc conductivity; their conductivities aredescribed at high frequencies (w/2p) by a power-law dependencyωn, where 0<n≤1 (Jonscher’s law) and the electric modulus spectra follows in the time domain an exponential decay function , where t is temperature activated and relaxation time, and 0<b<1 describes the slowing down of the relaxation process as a result of proton hopping

https://doi.org/10.18257/raccefyn.37(142).2013.2536

Keywords

polymers | ionic crystals | proton dynamics | electrical relaxation | universal behavior
PDF (Español (España))

References

Baranov A.I., Shuvalou L.A., Schagina N.M. (1982). Superionic conductivity and phase transitions in CsHSO4 and CsHSeO4. Journal of Experimental and Theoretical Physics Letters 36:459-462.

Castillo J., Chacón M., Castillo R., Vargas R. A., Bueno P. R. , Varela J. A. 2009. Dielectric relaxation and dc conductivityon the PVOHCF 3COONH4 polymer system.Ionics15: 537-544.

Castillo R. 2012. Estudio de relajación dieléctrica en cristales mixtos de (NH4)1-xKxH2PO4. Tesis de doctorado en Ciencias-Física, Universidad del Valle.

Checa O., Diosa J.E., Vargas R.A., Santamaría J. 2009. Dielectric relaxation of CsHSeO4 above room temperature.Solid State Ionics 180:673-676.

Cheng X., Shi Z., Glass N., Zhang L., Zhang J., Song D., Liu Z.-S., Wang H., Shen J. 2007. A review of PEM hydrogen fuel cell contamination: Impacts, mechanism and mitigation”. Journal of Power Sources 165: 739-756.

Diosa J. E., Vargas R.A., Albinsson I., Mellander B. E.2004. Dielectric relaxation in single crystal NH4H2PO4 in the high-temperature regime. Solid State Communications132: 55-58.

Diosa J. E., Vargas R.A., Albinsson I., Mellander B. E. 2005.Dielectric relaxation of KHSO4 above room temperature.Solid State Ionics 176:2913-2916.

Diosa J. E., Vargas R.A., Albinsson I., Mellander B. E. 2006. Dielectric relaxation in NH4HSO4 above room temperature.Solid State Ionics177: 1107-1110.

Fernández M.E., Delgado I., Diosa J.E. , Vargas R.A. 2005. Thermal and transport properties of the polymer electrolyte base donpoly(vinyl alcohol)-LiOH-H2O. phys. stat sol. (c) 2: 3738-3741.

FunkeK..Banhatti R.D. 2006.Ionic motion in materials withdisordered structure. Soli State Ionics 177: 1551-1557.

Goñi-Urtiaga A., Presvytes D., Scott K. (2012). Solids acids as electrolytes materials for proton exchange membrane (PEM) electrolysis: Review. International Journal of Hydrogen Energy 37: 3358-3372.

Hasani-Sadrabadi M. M., Ghaffarian S. R., Mokarram-Dorri N., Dashtimoghadama E., Majedi F. S. 2009.Characterization of Nanohybrid membranes for direct methanol fuel cell applications”. Solid State Ionics 180: 1497-1504.

Jiang S., Lin S., Feng W. (2011). Journal of the Mechanical Behavior of Biomedical Materials 4:1228-1233.

Jonscher A. K. (1966). Universal Relaxation Law. Chelsea Dilectrics Press, London.

Jurado J.F., García A., Vargas R.A. 2000. High Temperature phase transition in K1-x(NH4)xH2PO4. Solid Stae Ionics 136-137: 985-989.

Kreuer K.-D. 1996. Proton conductivity: Materials and Applications. Chemistry of Materials 8:610-641.

Kusoglu A., Karlsson A.M., Santare M. H. (2010). Structure property relationship in ionomer membranes. Polymer 51: 1457-1464.

Lee B.Y., Kim J-K., Kim J-Su., Kim Y.Y. (2009). Quantitave evaluation technique of polyvinyl alcohol (PVOH) fiber dispersion in ingineeredcementius composites. Cement and Concrete Composite 31:408-417.

Lee K-S. (1996). Hidden nature of high- temperature phase transitions on crtistals of KH2PO4- type: is it a physical change? Journal of Physico Chemical Solids 57: 333-342-.

Matosa B.R., Santiago E.I., Reyb J.F.Q., Ferlautoc A.S., Traversad E., Linardia M., Fonseca F.C. 2011.Nafion based composite elecfion based composite elecon-based composite electrolytes for proton exchange membrane fuel cells operating above 120°C with titania nanoparticles and nanotubes as fillers .Jorunal of Power Sources 196: 1061-1068.

Morita M., Noborio H., Yoshimoto N., Ishikawa M. 2006.Ionic conductance of composite electrolytes based on network polymer with ceramic powder”. Solid State Ionics 177: 715-720.

Norby T. (1999). Solid-state proton conductors: principles, properties, progress and prospects. Solid StateIonics125: 1-11.

Palacios I., Castillo R., Vargas R. A. 2003. Thermal and transport proper-Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)/KOH/H2O. ElectrochimicaActa48: 2195-2199.

Peighambardoust S.J., Rowshanzamir S., Amjadi M. 2010. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen 35: 9343-9384.

Ram S., Mandal T. K. 2004. Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water.Chemicla Physics 303: 121-128.

Rivera A. Santamaría J. and León C. (2001). Electrictrical conductivity relaxation in thin�film ytria�stabizad zirconia. Applied Physics Letters 78: 610-612

Smolinka T. 2009.Encyclopedia of Electrochemical Power Sources. Freiburg, Germany: Institute for Solar Energy Systems USE, pp 394-400.

Vargas M. A., Vargas R. A., Mellander B-E. 1999. New Proton Conducting Membranes based on PVAL/H3PO2/H2O”. Electrochimica Acta 44: 4227-4232.

Vargas M. A., Vargas R. A., Mellander B-E. 2000. More studies on PVAL+H3PO2+H2O proton conductor gels”. Electrochimica Acta 45:1399-1403.

Vargas R. A., Zapata V.H., Matallana E. and Vargas M.A. 2001. More thermal studies on the PVAL+H3PO2+H2O solid proton conductor gels.Electrochimica Acta 46: 1699-1702

Vargas R.A., Bedoya F., Castillo J. E., Rodríguez L. A. andChacón M.2011.Mechanical Relaxation in polymer electrolyte membranes based on PVOH-H3PO2-ZrO2. Journal of Nanostructured Polymers and Nanocomposites6/3: 87-92.

Wan X., Yucel T., Lu Q., Hu X., Kaplan D-L.(2010). Silk nanosphere and microsphere from silk/PVOH blend films for drug delivery. Biomaterials 31:1025-1035.

YangC.-C, Wu G.M. 2009.Study of microporous PVA/PVC composite polymer membrane and if application to MnO2 Capacitors”. Materials Chemistry and Physics 114: 948-955.

YangC.-C.2007. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC”. Journal of Membrane Science 288: 51-60.

YangC.-C., Lin C.-T., Chiu S.-J.2008. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application”.Desalini sation233 (2008) 137-146.

Yang C-C.(2006). Study of alkaline nanocomponent polymer electrolytes based on PVA-ZrO2-KOH.Materials Science and Engineering B 131:256-262.

Yang C-C.(2007). Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science 288:51-60.

Yuan X.-Z., Li H., Zhang S., Martin J., Wang H. 2011. A review of polymer electrolyte membrane fuel cell durability test protocols.Journal of Power Sources 196: 9107– 9116.

Zapata V.H., Castro W.A., Vargas R.A., Mellander B.-E. 2007. More studies on the PVOH–LiH2PO4 polymer system. Electrochimica Acta 53: 1476–1480.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales