SPATIAL COHERENCE OF LIGHT IN THE PHASE-SPACE: NON-PARAXIAL PROCEDUNES AND PHYSICAL IMPLICATIONS
PDF (Español (España))

How to Cite

Téllez, G. (2023). SPATIAL COHERENCE OF LIGHT IN THE PHASE-SPACE: NON-PARAXIAL PROCEDUNES AND PHYSICAL IMPLICATIONS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(142), 57–70. https://doi.org/10.18257/raccefyn.37(142).2013.2535

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

A review of two-dimensional exactly solvable models of statistical mechanics of Coulomb systems is presented. These are systems composed of charged particles. Two models are considered: the two-component plasma and the one-component plasma. Analogies between these classical systems and quantum field theories are exploited, which allow for an analytic resolution of the models. For the one-component plasma, new results for the free energy are presented.

https://doi.org/10.18257/raccefyn.37(142).2013.2535

Keywords

Statistical physics | exact models | electrostatic
PDF (Español (España))

References

[Brydges, Martin 1999] D. C. Brydges and Ph. A. Martin, “Coulomb systems at low density: A review”, J. Stat. Phys. 96, 1163 (1999).

[Bernevig, Haldane 2008] B. A. Bernevig, F. D. M. Haldane, “Model fractional quantum Hall states and Jack polynomials”, Phys. Rev. Lett. 100, 246802 (2008).

[Bernevig, Regnault 2009] B. A. Bernevig, N. Regnault, “Anatomy of abelian and non-abelian fractional quantum Hall states”, Phys. Rev. Lett. 103 206801 (2009).

[Caillol 1981] J. M. Caillol, “Exact results for a two-dimensional one-component plasma on a sphere”, J. Physique – Lettres 42, L-245 (1982).

[Chapman 1913] D. L. Chapman, “A contribution to the theory of electrocapillarity”, Philos. Mag. 25 475 (1913).

[Coleman 1975] S. Coleman, “Quantum sine–Gordon equation as the massive Thirring model”, Phys. Rev. D 11, 2088 (1975).

[Cornu, Jancovici 1989] F. Cornu, B. Jancovici, “The electrical double layer: A solvable model”, J. Chem. Phys. 90, 2444

[Dashen, Hasslacher, Neveu, 1975] R. F. Dashen, B. Hasslacher, A. Neveu, “Particle spectrum in model field theories from semiclassical functional integral techniques”, Phys. Rev. D 11, 3424 (1975).

[Debye, H¨uckel 1923] P. Debye, E. H¨uckel, “The theory of electrolytes. I. Lowering of freezing point and related phenomena”, Phys. Z 24185 (1923).

[Ferrero, T´ellez 2007] A. Ferrero, G. T´ellez, “Two-dimensional two-component plasma with adsorbing impurities”, J. Stat. Phys. 129, 759(2007).

[Forrester 2010] P. J. Forrester, Log-Gases and Random Matrices, Princeton University Press (2010).

[Forrester, Jancovici, T´ellez 1996] P. J. Forrester, B. Jancovici, G. T´ellez, “Universality in some classical Coulomb systems”, J. Stat. Phys. 84, 359 (1996).

[Gaudin 1985] M. Gaudin, “L’isotherme critique d’un plasma sur r´eseau (β = 2, d = 2, n = 2)”, J. Phys. (France) 46, 1027

(1985).[Ginibre 1965] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys. 6, 440 (1965).

[Gouy 1910] G. L. Gouy, “Sur la constitution de la charge ´electrique a la surface d’un ´electrolyte”, J. Phys. 9, 457 (1910).

[Jancovici 1981] B. Jancovici, “Exact results for the two-dimensional one-component plasma”, Phys. Rev. Lett. 46, 386 (1981).

[Jancovici, Manificat, Pisani 1994] B. Jancovici, G. Manificat, C. Pisani, “Coulomb systems seen as critical systems: Finite-size effects in two dimensions”, J. Stat. Phys. 76, 307(1994).

[Jancovici, T´ellez 1996] B. Jancovici, G. T´ellez, “Coulomb systems seen as critical systems: Ideal conductor boundaries” J. Stat. Phys. 82, 609 (1996).

[Jancovici, T´ellez 1998] B. Jancovici, G. T´ellez, “Twodimensional Coulomb systems on a surface of constant negative curvature”, J. Stat. Phys. 91, 953 (1998).

[Kalinay, ˇSamaj 2002] P. Kalinay, L. ˇSamaj, “Thermodynamic properties of the two-dimensional Coulomb gas in the low-density limit”, J. Stat. Phys. 106, 857 (2002).

[Klauder 2011] J. R. Klauder, A modern approach to functional integration, Springer (2011).

[Laughlin 1983] R.B. Laughlin, “Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations”, Phys. Rev. Lett. 50, 1395 (1983).

[Lieb, Lebowitz 1972] E. H. Lieb, J. L. Lebowitz, “The constitution of matter: Existence of thermodynamics for systems composed of electrons and nuclei”, Adv. Math. 9, 316 (1972).

[Macdonald 1995] I. G. Macdonald, Hall polynomials and symmetric functions, 2nd ed., Oxford University Press, (1995).

[McCaskill, Fackerell 1988] J. S. McCaskill, E. D. Fackerell, “Painlev´e solution of the Poisson-Boltzmann equation for a cylindrical polyelectrolyte in excess salt solution”, J. Chem. Soc. Faraday Trans. 2, 161 (1988).

[McCoy, Tracy, Wu 1977] B. M. McCoy, C. A. Tracy, T. T. Wu, “Painlev´e functions of the third kind”, J. Math. Phys. 18, 1058 (1977).

[Mehta 1991] M. L. Mehta, Random Matrices, Academic Press, 2nd ed. (1991).

[Onsager 1944] L. Onsager, “Crystal statistics. I. A twodimensional model with an order-disorder transition”, Phys. Rev. 65, 117 (1944).

[ˇSamaj 2003] L. ˇSamaj, “Exact solution of a charge-asymmetric two-dimensional Coulomb gas”, J. Stat. Phys. 111, 261(2003).

[ˇSamaj 2004] L. ˇSamaj, “Is the two-dimensional one-component plasma exactly solvable?”, J. Stat. Phys. 117, 131 (2004).

[ˇSamaj, Jancovici 2002] L. ˇSamaj, B. Jancovici, “Largedistance behavior of particle correlations in the two dimensional two-component plasma”, J. Stat. Phys. 106, 301(2002).

[ˇSamaj, Percus 1995] L. ˇSamaj, J. K. Percus, “A functional relation among the pair correlations of the two-dimensional one-component plasma”, J. Stat. Phys. 80, 811 (1995).

[ˇSamaj, Travˇenec 2000] L. ˇSamaj, I. Travˇenec, “Thermodynamic properties of the two-dimensional two-component plasma”, J. Stat. Phys. 101, 713 (2000).

[Samuel 1978] S. Samuel, “Grand partition function in field theory with applications to sine–Gordon field theory”, Phys. Rev. D 18 1916 (1978).

[T´ellez 1997] G. T´ellez, “Two-component plasma in a gravitational field”, J. Chem. Phys. 106, 8572 (1997).

[T´ellez 2005] G. T´ellez, “Short-distance expansion of correlation functions for charge-symmetric two-dimensional two-component plasma: Exact results”, J. Stat. Mech. : Theory and Experiment, P10001 (2005)

[T´ellez 2006] G. T´ellez, “Charge inversion of colloids in an exactly solvable model”, Europhys. Lett. 76, 1186 (2006).

[T´ellez 2007] G. T´ellez, “Equation of state in the fugacity format for the two-dimensional Coulomb gas”, J. Stat. Phys. 126, 281 (2007).

[T´ellez, Forrester 1999] G. T´ellez, P. J. Forrester, “Exact finite size study of the 2dOCP at Γ = 4 and Γ = 6”, J. Stat. Phys. 97, 489 (1999).

[T´ellez, Forrester 2012] G. T´ellez, P. J. Forrester, “Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma”, J. Stat. Phys. 148, 824 (2012).

[T´ellez, Merch´an 2002] G. T´ellez, L. Merch´an, “Solvable model for electrolytic soap films: the two-dimensional two-component plasma”, J. Stat. Phys. 108, 495 (2002).

[T´ellez, Trizac 2006] G. T´ellez, E. Trizac, “Exact asymptotic expansions for the cylindrical Poisson-Boltzmann equation”, J. Stat. Mech. P06018 (2006).

[Torres, T´ellez 2004] A. Torres, G. T´ellez, “Finite-size corrections for Coulomb systems in the Debye-Huckel regime”, J. Phys. A: Math. and Gen. 37, 2121 (2004).

[Tracy, Widom 1998] C. A. Tracy, and H. Widom, “Asymptotics of a class of solutions to the cylindrical Toda equations”, Comm. Math. Phys. 190, 697 (1998).

[Tracy, Widom 1997] C A. Tracy, H. Widom, “On exact solutions to the cylindrical Poisson-Boltzmann equation with applications to polyelectrolytes”, Physica A 244, 402 (1997).

[Trizac, T´ellez 2006] E. Trizac, G. T´ellez, “Onsager-Manning Oosawa condensation phenomenon and the effect of salt”, Phys. Rev. Lett. 96, 038302 (2006).

[Trizac, T´ellez 2007] E. Trizac, G. T´ellez, “Preferential interaction coefficient for nucleic acids and other cylindrical polyions”, Macromolecules 40 (4), 1305 (2007).

[Verwey, Overbeek 1948] E. J. W. Verwey, J. T. G. Overbeek Theory of the stability of lyophobic colloids, Elsevier (1948).

[Widom 1997] H. Widom, “Some classes of solutions to the Toda lattice hierarchy”, Comm. Math. Phys. 184, 653 (1997). 84, 161 (1988).

[Zamolodchikov 1995] Al. B. Zamolodchikov, “Mass scale in the sin–Gordon model and its reductions”, Int. J. Mod. Phys. A 10, 1125 (1995).

[Zamolodchikov 1979] A. B. Zamolodchikov, Al. B. Zamolod-chikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys. 120, 253 (1979)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales