PHOTOCATALYTIC DEGRADATION OF PHENOL USING AL-FE AND AL-CU PILLARED CLAYS
PDF (Español (España))

How to Cite

Ñungo-Moreno, J., Carriazo, , J. G., Moreno, S., & Molina, R. A. (2023). PHOTOCATALYTIC DEGRADATION OF PHENOL USING AL-FE AND AL-CU PILLARED CLAYS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 35(136), 295–302. https://doi.org/10.18257/raccefyn.35(136).2011.2511

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

In this work, the pillaring of a Colombian natural clay (bentonite) with the Al-Fe and Al-Cu systems, and the assessment of their photocatalytic activity in phenol elimination in aqueous solution are shown. The obtained solids were characterized by X-ray diffraction analyses and cationic exchange capacity, showing the effective modification via pillaring. The catalytic activity assessment of the solids confirms the potential application of these catalysts in the degradation of organic pollutants in aqueous media through photo-assisted catalytic processes with UV radiation. The results show higher photocatalytic activity for the Al-Fe-pillared clay and higher selectivity for the Al-Cu-pillared clay towards the formation of CO2 and H2O.

https://doi.org/10.18257/raccefyn.35(136).2011.2511

Keywords

pillared clay | photocatalysis | phenol oxidation | photo-fenton process
PDF (Español (España))

References

Andreozzi R., Caprio V., Insola A., Marotta, R. 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 53:51-59.

Busca G., Berardinelli S., Resini C., Arrighi L. 2008. Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials 160:265-288.

Carriazo J. G., Moreno-Forero M., Molina R. A., Moreno S. 2010. Incorporation of titanium and titanium-iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science 50:401-408.

Carriazo J., Molina R., Moreno S. 2007. Caracterización estructural y textural de una bentonita colombiana. Revista Colombiana de Química 36:213-225.

Carriazo J., Guélou E., Barrault J., Tatibouët J-M., Molina R., Moreno S. 2005. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe., Water Research, 39:3891-3899.

Carriazo J., Guélou E., Barrault J., Tatibouet J. M., Moreno S. 2003. Catalytic wet peroxide oxidation of phenol over AlCu or Al-Fe modified clays. Applied Clay Science 22:303-308.

Cheng M., Song W., Ma W., Chen C., Zhao J., Lin J., Zhu H. 2008. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation. Applied Catalysis B 77:355-363.

Ciesla P., Kocot P., Mytych P., Stasicka Z. 2004. Homogeneous photocatalysis by transition metal complexes in the environment. Journal of Molecular Catalysis A, 224:17-33.

Crittenden J. C., Liu J., Hand D. W., Perram D. L. 1997. Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Research 31:429-438.

Daza C.E., Moreno S., Molina R. 2004. Bentonita Colombiana modificada con Al-Cu para la oxidación de fenol en medio acuoso diluido. Scientia et technica 37:265-270.

De León M., Castiglioni J., Bussi J., Sergio M. 2008. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catalysis Today 133-135, 600-605.

Fortuny A., Font J., Fabregat A. 1998. Wet air oxidation of phenol using active carbon as a catalyst. Applied Catalysis B 19:165-173.

Garrido-Ramirez E.G., Theng B.K.G, Mora M.L. 2010. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review. Applied Clay Science 47:182-192.

Gil A., Gandía L., Vicente M. A. 2000. Recent advances in the synthesis and catalytic applications of pillared clays. Catalysis Reviews-Science and Engineering 42:145-212.

Goldstein S., Rabani J. 2008. The ferrioxalate and iodide actinometers in the UV region. Journal of Photochemistry and Photobiology A 193:50-55.

Iurascu B., Siminiceanu I., Vione D., Vicente M. A., Gil A. 2009. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Research 43:1313-1322.

Jankowski J., Kieber D., Mopper K. 1999. Nitrate and nitrite ultraviolet actinometers. Photochemistry and Photobiology 70:319-328.

Ksontini N., Najjar W., Ghorbel A. 2008. Al-Fe pillared clays: Synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids 69:1112-1115.

Liotta L. F., Gruttadauria M., Di Carlo G., Perrini G., Librando V. 2009. Heterogeneous catalytic degradation of phenolic substrates: Catalysts' activity. Journal of Hazardous Materials 162:588-606.

Martínez F., Callejas G., Melero J. A., Molina R. 2007. Iron species incorporated over different silica supports for the heterogeneous Photo-Fenton oxidation of phenol. Applied Catalysis B 70:452-460.

Ministerio de Salud. Colombia, Decreto 1594: Normas de aguas de vertimientos. Bogotá, 26 de junio de 1984.

Song W., Cheng M., Ma J., Ma W., Chen C., Zhao J. 2006. Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay, Environmental and Science Technology 40:4782-4787.

Suárez-Ojeda M.E., Carrera J., Metcalfe I.S., Font J. 2008. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: Refractory nature of the WAO intermediates. Chemical Engineering Journal 144:205-212.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0