OLD AND NEW RESULTS CONCERNING SINGULAR AND HYPERSINGULAR INTEGRALS
PDF (Español (España))

How to Cite

Horváth, J. (2023). OLD AND NEW RESULTS CONCERNING SINGULAR AND HYPERSINGULAR INTEGRALS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 29(113), 547–569. https://doi.org/10.18257/raccefyn.29(113).2005.2185

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Exposition of some works of the author on singular and hypersingular integrals, published between 1953 and 1987, complemented with new results, and remarks on contributions by other mathematicians, simplifications, and some amendments.

https://doi.org/10.18257/raccefyn.29(113).2005.2185

Keywords

Singular integral operators | Hilbert transforms | distributions | convolution of distributions
PDF (Español (España))

References

Alvarez, Josefina; Carton-Lebrun, Christiane: Optimal spaces for the S'-convolutions with Marcel Riesz ker­nels and the N-dimensional Hilbert kernel. Analysis of di­vergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., Birkhiiuser, págs. 233-248.

Bjéirck, Jan-Erik: Rings of differential operators. North­Holland, Amsterdam, 1979.

Bochner, Saloman: Vor/esungen über Fouriersche Jnte­grale. Akademische Verlagsgesellschaft, Leipzig, 1932.

Bochner, Saloman: Theta relations with spherical harmonics. Proc. Nat. Acad. Sci. USA 37 (1951), 804-808.

Calderón, Alberto P.: On theorems of M. Riesz and Zyg­mund. Proc. Amer. Math. Soc. 1 (1950), 533-535.

Calderón, Alberto P: On a problem of Mihlin. 'Irans. Amer. Math. Soc. '78 (1955), 209-224.

Calderón, Alberto P: On singular integrals. Amer. J. Math 78 (1956), 289-309.

Calderón, Alberto P: Singular integral operators and differential equations. Amer. J. Math. 79 (1957), 901-921.

Cartwright, Mary Lucy: Manttscripts of Hardy, Little­wood, Marce/ Riesz and Titchmarsh. !3ull. London Math. Soc. 14 (1982), 472-532.

Christ, Michael: Lectures on singular integral operators. Conf. Board of the Math. Sciences, Regional Conferences in Math., No. 77. Amer. Math. Soc., 1990.

Diaz, Joaquin B.: On a class of partial differential equa­tions of even arder. Amer. J. Math. 68 (1946), 611-659. Dierolf, Peter; Voigt, Jürgen: Convolution and S'-convolution of distributions. Collect. Math. 29 (1978), 185- 196.

Eskin, G. l.: Boundary value problems for el/iptic pseudo­r differential equations. Tanslations of Mathematical Mono­graphs, Vol. 52. Amer Math. Soc., 1981.

Fefferman, C.; Stein, E. M.: HP spaces of several varia­bles. Acta Math. 129 (1972), 137-193.

Fefferman, Charles: Selected theorems by Eli Stein. Es­says on Fourier analysis in honor of Elias M. Stein, ed.: Ch. Fefferman, R. Fcfferman, St. Wainger. Princeton University Press, 1995, págs. 1-35.

Fueter, R.: Die Funktionentheorie der Differentialglei­chungen 6u = O und 66u = O mit v-ier reellen Variablen. Commentarii Math. Helvetici 7 (1934/35), 307-330.

Giraud, Georges: Sur une classe générale d'équations a intégrales principales. C.R. Acad. Sci. París 202 (1936), 2124-2127.

Giraud, Georges: Complément a un résultat sur les équations ó. intégrales principales. C.R. Acad. Sci. Paris 203, 292-294. Hardy, G. H.; Littlewood, J. E.; Pólya, G.: Jnequali­ties. Cambridge University Press, 1934.

Hirata, Yukio: On convolutions in the theory of distribu­tions. J. of Science of the Hiroshima University, Ser. A, 22 (1958), 89-98.

Hirata, Y.; Ogata, Hayao: On the exchange formula for distribul'ions. Journal of Science of the Hiroshima Universi­ty, Ser. A. 22 (1958), 147-152.

Héirmander, Lars: Pseudo-differential operators. Comm. Pure Applied Math. 18 (1965), 501-517.

Héirmander, Lars: Pseudo-clifferenlial operat.ors ancl non-elliptic bound­ari; problems. Ann. of Math. 83 (1966), 129-209.

Héirmander, Lars: Pseudo-diffcrential operators and hypoelliptic equa­tions. Singular Integrals, Procecdings of Symposia in Pure lVIathematics, Vol. 10. Amer. Math. Soc., 1967, págs. 138- 183.

Héirmander, Lars: The analysis of linear partial differential operators f. Grundlehren der mathematischen Wissenschaften 256. Springer, 1983.

Héirmander, Lars: The analysis of linear partial difjerential operators III. Grundlehren der mathematischen Wissenschaften 274. Springer, 1985.

Horváth, J.: Sur les fonctions conjuguées d plusieurs va­riables. Indag. Math. 15 (1953), 17-29.

Horváth, J: Singular integral operators and spherical harmonics. Trans. Amer. Math. Soc. 82 (1956), 52-63.

Horváth, J: Basic sets of polynomial solutions for partial differential equations. Proc. Amer. Math. Soc. 9 (1958), 569-575.

Horváth, J: On some composition formulas. Proc. Amer. Math. Soc. 10 (1959), 433-437.

Horváth, J: A generalization of the Cauchy-Riemann equations. Contributions to Diff. Equations 1 (1961), 39-58.

Horváth, J: Finite parts of distributions. Linear operators and approximations (Oberwolfach, August 14-22, 1971). Internat. Series Num. Math., Vol. 20. Birkhäuser, 1972, págs. 142-158.

Horváth, J: Distribuciones definidas por prolongación analítica. Rev. Colombiana Mat. 8 (1974), 47-95.

Horváth, J: Sur la convolution des distributions. Bull. Sci. Math.98 (1974), 183-192.

Horváth, J: Composition of hypersingular integral operators. Applicable Analysis 7 (1978), 171-190.

Horváth, J: Convolution des noyaux hypersinguliers. G. Choquet, M. Rogalski, J. Saint-Raimond (Eds.), Séminaire initiation á l'analyse, 19e année, 1979/80, expose no. 8. Univ París VI, 1980, págs. 1-17.

Horváth, J.; Ortner, N.; Wagner·, P.: Analytic continuation and convolution of hypersingular higher Hilbert-Riesz kernels. J. Math. Anal. Appl. 123 (1987), 429-447.

Humbert, Pierre: Potentiels et prépotentiels. Cahiers Scientifiques, fasc. 15. Gauthier-Villars, Paris, 1936.

Katznelson, Yitzhak: An introduction to harmonic analysis. Dover, New York, 1976.

Ketchum, P. W.: A complete solution of Laplace's equation by an infinite hypervariable. Amer. J. Math. 51 (1929), 179-188.

Kohn, J. J.: Singular integral equations for differential forms on Riemannian manifolds. Proc. Nat. Acad. Sci. USA 42 (1956), 650-653.

Kohn, J. J.; Nirenberg, L.: An algebra of pseudodifferential operators. Comm. Pure Applied Math. 18 (1965), 269-305.

Kumano-go, Hitoshi: Pseudo-differential operators. MIT Press, Cambridge, MA, 1974.

Lammel, Ernst: Generalizaciones de la teoría de las funciones de variables complejas. Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latinoamérica, Villavicencio-Mendoza, 1954. UNESCO, págs. 191-197.

Leray, Jean: Hyperbolic differential equations. The Institute of Advanced Study, Princeton, N.J., 1953, 1955.

Littlewood, J. E.: A mathematicians miscellany. Methuen, London, 1953, 1957.

Magnus, W; Oberhettinger, F.: Formulas and theorems for the special functions of mathematical physics. Chelsea, New York, 1949.

Mihlin, S. G.: Singular integral equations. Amer. Math. Soc. Translations, Ser 1, Vol. 10, 1962, págs. 84-198.

Miles, E. P. jr.: Three dimensional harmonic functions generated by analytic functions of a hypervariable. Amer. Math. Monthly 61 (1954), 694-697.

Lammel, Ernst: The analytic Cauchy problem for the iterated wave equation. Portugaliae Math. 18 (1959), 111-119.

Miles, E. P.; Williams, Ernest: A basic set of of homogeneous harmonic polynomials in k variables. Proc. Amer. Math. Soc. 6 (1955), 191-194.

Miles, E. P.; Williams, Ernest: A note on basic sets of homogeneous harmonic polynomials. Proc. Amer. Math. Soc. 6 (1955), 769-770.

Miles, E. P.; Williams, Ernest: The Cauchy problem for linear partial differential equations with restricted boundary conditions. Canadian J. Math. 8 (1956), 426-431.

Miles, E. P.; Williams, Ernest: A basic set of polynomial solutions for the Euler-Poisson-Darboux and Beltrami equations. Amer. Math. Monthly 63 (1956), 401-404.

Miles, E. P.; Williams, Ernest: Basic sets of polynomials for the iterated Laplace and wave equations. Duke Math. J. 26 (1959), 35-40.

Miles, E. P.; Young, E. C.: Basic sets of polynomials for generalized Beltrami and Euler-Poisson-Darboux equations and their iterates. Proc. Amer. Math. Soc. 18 (1967), 981-986.

Okikiolu, George O.: Special integral operators, Vol. II - Poisson operators, conjugate operators and related integrals. Okikiolu Sci. and Industr. Org., London, 1981.

Ortiz F., Alejandro: Operadores integrales singulares. Universidad Nacional de Trujillo, Depto. de Matemática, Trujillo, Perú, 1972.

Ortner, Norbert: Faltung hypersingulärer integraloperatoren. Math. Ann. 248 (1980), 19-46.

Ortner, Norbert: Sur la convolution des distributions. C.R. Acad. Sci. París, Sér A-B 290 (1980), 533-536.

Ortner, Norbert: Convolution des distributions et des noyaux euclidiens. G. Choquet, M. Rogalski, J. Saint - Raimond (Eds.), Séminaire initiation a l'analyse, 19e année, 1979/1980, exposé no. 12. Univ Paris VI, 1980, págs. 1-11.

Ortner, Norbert: Analytic continuation and convolution of hypersingular higher Hilbert-Riesz kernels. Alfred Haar memorial conference, Budapest, 1985, págs. 675-685.

Ortner, Norbert: On some contributions of John Horváth to the theory of distributions. J. Math. Anal. Appl. 297 (2004), 353-383.

Ortner, N.: Wagner, P.:Convolution groupsfor cuasihyperbolic systems of differential operators.

Plessner, A.: Zur Theorie der konjugierten trigonometrischen Reihen. Mitteilungen Math. Seminar Gieben 10 (1923), 1-36.

Protter, M. H.: Generalized spherical harmonics. Trans. Amer. Math. Soc. 63 (1948), 314-341.

Protter, M. H.: On a class of harmonic polynomials. Portugaliae Math. 10 (1951), 11-22.

Riesz, Frigyes: Über die Randwerte einer analytischen Funktion. Math. Zeitschrift 18 (1923), 117-124; (Euvres complétes, Budapest, 1960, D7, págs. 645-653.

Riesz, Marcel: Sur la sommation des séries de Fourier. Acta Sci. Math. Szeged 1 (1923), 104-113.

Riesz, Marce: Sur les fonctions conjuguées Math. Zeitschrift 27 (1927), 218-244.

Riesz, Marce: L'intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81 (1949), 1-223.

Riesz, Marce: Collected papers. Springer-Verlag, 1988.

Roider, Bernhard: Surla convolution des distributions. Bull. Sci. Math. 100 (1976), 193-199.

Rudin, Walter: Fourier· analysis on grous. Wiley, 1962, 1990.

Rudin, Walter: Hypersingular integrals and their applications. Taylor and Francis, London, 2002.

Schaad, Margrit: Über eine Klasse van rechtsregulären Funktionen mit 2n reellen Variablen. Disertación, Zurich, 1944.

Schwartz, Laurent: Théorie des distributions. Nouvelle édition. Hermann, Paris, 1966.

Schwartz, Laurent: Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications. Séminaire, Institut Henri Poincaré, Paris, 1954.

Schwartz, Laurent: Distributions a valeurs vectorielles I. Ann. Institut Fourier Grenoble 7 (1957), 1-141.

Schwartz, Laurent: Distributions á valeurs vectorielles II. Ann. Institut Fourier Grenoble 8 (1959), 1-209.

Seeley, R. T.: Elliptic singular integral equations. Singular Integrals, Proceedings of Symposia in Pure Mathematics, Vol. 10, Amer. Math. Soc. 1967, págs. 308-315.

Shiraishi, Risai: On the definition of convolutions for distributions. J. Sci. Hiroshima University, Ser. A 23 (1959), 19-32.

Simanca, S. R.: Pseudo-differential operators. Pitman Research Notes in Math. Series 236. Longman Scientific and Technical, Harlow, Essex, UK, 1990.

Staub, Alfred: Integralsätze hyperkomplexer, regulärer Funktionen van 2n reellen Variablen. Disertación, Zurich, 1946.

Stein, Elias M.: Singular integrals and differentiability properties of functions. Princeton University Press, 1971.

Harmonic analysis: real-variable methods, orthogonality and oscillatory; integrals. Princeton University Press, 1993.

Stein, E. M; Weiss, G.: On the theory of harmonic functions of several variables I, The theory of HP spaces. Acta Math. 103 (1960), 25-62.

Stein, E. M; Weiss, G.: On the theory of harmonic functions of several variables II, Behavior near the boundary. Acta Math. 106 (1961), 137-174.

Stein, E. M; Weiss, G.: Introduction to Fourier analysis in Euclidean Spaces. Princeton University Press, 1971.

Taylor, Michael E.: Pseudodifferential operators. Princeton University Press, 1981.

Thorin, G. 0.: An extension of a convexity theorem due to M. Riesz. Kungl. Fysiografiska Sälskapets i Lund Förhandlinger 8 (1938), no. 14.

Thorin, G. 0.-: Convexity theorems generalizing those of M. Riesz and Hadamard, with some applications. Disertación Lund, Meddelanden fran Lunds Universitets Matematiska Seminarium, Vol. 9 (1948).

Titchmarsh, E. C.: Introduction to the theory of Fourier· integrals. Cambridge University Press, 1948.

Treves, Francois: Introduction to pseudodifferential and Fourier integral operators. Vol. 1, Pseudodifferential operators. Plenum, New York, 1980.

Unterberger, A; Bokobza, J.: Les operateurs de Calderón-Zygmund précisés. C.R. Acad. Sci. Paris 259 (1965), 1612-1614.

Wagner, Peter: Zur Faltung van Distributionen. Math. Ann. 276 (1987), 467-485.

Wagner, Peter-: Bernstein-Sato-Polynome und Faltungsgruppen zu Differentialoperatoren. Zeitschrift für Analysis und ihre Anwendungen 8 (1989), 407-423.

Weiss, Guido: Análisis armónico en varias variables. Teoría de los espacios HP. Cursos y seminarios matemáticos, fasc. 9, Universidad de Buenos Aires, 1960.

Wicht, M. C.: Recursion and interrelation for Miles­ Williams biharmonics. Amer. Math. Monthly 64 (1957), 463.

Yoshinaga, Kyoichi; Ogata, Hayao: On convolutions. J. of Science of the Hiroshima University, Ser A 22 (1968) 15-24

Zaidman, S.: Distributions and pseudo-differential operators. Pitman Research Notes in Math. Series 248, Longman Scientific and Technical, Harlow, Essex, UK, 1991.

Zaidman, S.: Topics in pseudo-differential operators. Pitman Research Notes in Math. Series 359, Longman, Harlow, Essex, UK, 1996.

Zygmund, Antoni: Trigonometric series, Second edition. Cambridge University Press, 1959.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales