ATMOSPHERIC ENVIRONMENTS OF CONVECTIVE SYSTEMS AT MESO-SCALE OVER COLOMBIA DURING 1998
PDF (Español (España))

How to Cite

Mejía, J. F., & Poveda, G. . (2023). ATMOSPHERIC ENVIRONMENTS OF CONVECTIVE SYSTEMS AT MESO-SCALE OVER COLOMBIA DURING 1998. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 29(113), 495–514. https://doi.org/10.18257/raccefyn.29(113).2005.2181

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Métricas Alternativas


Dimensions

Abstract

Diagnostics of prevalent atmospheric conditions during the life cycle of meso-scale convective systems (MCSs) over Colombia and the eastern tropical Pacific are developed using satellite datafrom the Tropical Rainfall Measuring Mission (TRMM), and from the NCEP/NCAR Reanalysis project. Atmospheric stability indices such as CAPE, CINE, LI, and equivalent potential temperature are quantified, as well as kinematical indices such as relative vertical vorticity and vertical wind shear. Atmospheric environments associated with MCS are studied for 1998, both as long-term means but also in terms of the seasonal cycle. Large scale atmospheric indices are quantified for the most intense precipitation events within MCS. Relationships between those indices are estimated, and atmospheric conditions are studied for the life cycle of MCSs, including antecedent and subsequent conditions surrounding MCSs’ activity.

https://doi.org/10.18257/raccefyn.29(113).2005.2181

Keywords

Colombia | Tropical Rainfall | TRMM Mission | NCEP/NCAR Reanalysis | Meso-scale Convective Systems | CAPE | CINE
PDF (Español (España))

References

Blanchard, D. O. 1992. Evolution of a mesoscale convective complex: The role of inertial instability. Preprints, 5th Conference on Mesoscale Processes, Atlanta, GA, Amer. Meteor. Soc., 341-346.

Blanchard, D. O., & W. R. Cotton. 1994. Jet-induced inertial instability and upscale growth of mesoscale convective systems, Proc. 6th Conference on Mesoscale Processes, Portland, OR, American Meteorologial Society, 369-372.

Cotton, W., & R. Antes. 1989. Storm and Cloud Dynamics, Intenational Geophysics Series, Vol. 44.

Cuartas, L. A., & G. Poveda. 2002. Balance atmosférico de humedad y estimación de la precipitación reciclada en Colombia según el Reanálisis NCEP/NCAR, Meteorología Colombiana, 5, 49-57.

Curry, J. A., & P. J. Webster. 1999. Thermodynamics of Atmospheres and Oceans, Academic Press, 471 pp.

Deidda, R., R. Benzi, & F. Siccardi. 1999. Multifractal modeling of anomalous scaling laws in rainfall, Water Resources Research, 35, 1853-1867.

Emanuel, K. A. 1994. Atmospheric Convection. Oxford University Press, 580pp.

Eslava, J. 1993. Algunas particularidades climáticas de la región del Pacífico Colombiano, Atmósfera, 17, 45-63.

Gray, W M., & W. Frank. 1978. New results of tropical cyclone research from observational analysis, NEPRF TR 78-01, U.S.A. Navy, 108 pp.

Houze, R. A., Jr. Mesoscale convective systems, Reviews of Geophysics, 42, RG 4003, 1-43, 2004.

Hoyos, C. 1999. Aplicaciones de la transformada de Fourier y la descomposición en onditas a señales hidrológicas y sísmicas. Trabajo Dirigido de Grado, Ingeniería Civil, Universidad Nacional de Colombia, Sede Medellín.

Hoyos, N., P.Waylen & A. Jaramillo. Seasonal and spatial patterns of erosivity in a tropical watershed of the Colombian Andes, Journal of Hydrology, 1-15, 2005.

Kalnay, E., & co-autores. 1996. The NCEP/NCAR 40-year reanalysis project, Bulletin of the American Meteorological Society, 77,437-471.

Kummerow, C. W., W. Barnes, T. Kosu, J. Shiue, & J. Simpson. 1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15, 809-817.

Laing, A. G. y J. M. Fritsch. 2000. The large scale environments of the global populations of mesoscale convective complexes. Monthly Weather Review, 128, 2756-2776.

LeMone, M. A., E. J. Zipser, & S. B. Trier. 1998. The role of environmental shear and CAPE in determining the structure and evolution of mesoscale convective systems during TOGA COARE. Journal of Atmospheric Sciences, 55, 3493-3518.

Lucas, C., & E. J. Zipser. 2000. Environmental variability during TOGA-COARE. Journal of Atmospheric Sciences, 57, 2333-2350.

Mapes, B. E., 1997. Equilibrium vs. activation controls on large-scale variations of tropical deep convection in the physics and parameterization of moist convection, Kluwer, pp. 321-358.

Mapes, B. E., T. T. Warner, M. Xu, & A. Negri. 2003a. Diurnal patterns of rainfall in Northwestern South America. Part I:Observations and Context, Monthly Weather Review, 131, 799-812.

Mapes, B. E., T. T. Warner, M. Xu, & A. Negri. 2003b. Diurnal patterns of rainfall in Northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore, Monthly Weather Review, 131, 830-844.

Nesbitt, S. W., E. J. Zipser, & D. J. Cecil. 2000. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. Journal of Climate, 13, 4087–4106.

North, G. 1992. Characteristics of tropical precipitation important for its estimation by satellites, The global role of tropical rainfall, Hampton, International Symposium on Aqua and Planet, Tokai University, Virginia (USA).

Olsson, J., & J. Niemczynowicz. 1996. Multifractal analysis of daily spatial rainfall distributions, Journal of Hydrology, 187, 29-43.

Over, T., & V. K. Gupta. 1994. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on largescale forcing, Journal of Applied Meteorology, 33, 1526–1542.

Poveda, G. 1998. Retroalimentación entre el fenómeno de El Niño/Oscilación del Sur y la hidrología de Colombia, Tesis Ph.D., Universidad Nacional de Colombia, Sede Medellín.

Poveda, G. 2004. La hidroclimatología de Colombia: Una síntesis desde la escala interdecadal hasta la escala diurna, Revista Academia Colombiana de Ciencias, Vol.28 (107), 201-222.

Poveda, G., A. Jaramillo, M. M. Gil, N. Quiceno, & R. Mantilla. 2001. Seasonality in ENSO related precipitation, river discharges, soil moisture, and vegetation index (NDVI) in Colombia, Water Resources Research, Vol. 37, No. 8, 2169-2178.

Poveda, G., & O. J. Mesa. 1997. Feedbacks between hydrological processes in tropical South America and large scale oceanic atmospheric phenomena, Jurnal of Climate, 10, 2690-2702.

Poveda, G. & O. J. Mesa. On the existence of Lloró (The rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by low-level jet, Geophysical Research Letters, 27, Nº11, 1675-1678, Junio 2000.

Poveda, G., O. J. Mesa, P. A. Arias, L. F. Salazar, H. Moreno, S. C. Vieira, P. A. Agudelo, V. G. Toro, & J. F. Álvarez. 2004. The diurnal cycle of precipitation in the tropical Andes of Colombia, Monthly Weather Review. Vol. 133, No.1, 228-240, 2005.

Rasmusson, E., & P. Arkin. 1992. Observing tropical rainfall from space: A review. The global role of tropical rainfall, Hampton, International Symposium on Aqua and Planet, Tokai University, Virginia (USA).

Ridder, K. 1997. Land surface processes and the potential for convective precipitation, Journal of Geophysical Research, 102, D25, 30085-30090.

Sherwood, S., & R. Wahrlich. 1999. Observed evolution of tropical deep convective events and their environment, Monthly Weather Review, 127, 1777-1795.

Velasco, I., & J. M. Fritsch. 1987. Mesoscale convective complexes in the Americas, Journal of Geophysical Research, 92, D8, 9591-9613.

Warner, T. T. , B. E. Mapes, & M. Xu. 2003. Diurnal patterns of rainfall in northwestern South America. Part II: Model Simulations, Monthly Weather Review, 131, 813-829.

Zuluaga, M. D., & G. Poveda. 2004. Diagnóstico de sistemas convectivos de mesoescala sobre Colombia y el Océano Pacífico oriental durante 1998-2002, Avances en Recursos Hidráulicos, 11, 145-160, 2004.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales