MANUFACTURE AND OPTICAL CHARACTCRIZATION OF SEMICONDUCTOR MATERIALS FOR USE IN OPTOELE~TRONICS
PDF (Español (España))

How to Cite

Ariza Calderón, H. . (2023). MANUFACTURE AND OPTICAL CHARACTCRIZATION OF SEMICONDUCTOR MATERIALS FOR USE IN OPTOELE~TRONICS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 27(104), 357–368. https://doi.org/10.18257/raccefyn.27(104).2003.2076

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract


In this work, we describe two optical characterization techniques, photoluminescence and photoreflectance, and the growth technique liquid phase epitaxy. By means of these techniques, we fulfill the growth and the study of the main physical properties of semiconductor thin films formed by ternary and quaternary alloys. Epitaxial films type p and type n of GaAs and Ga1-xAlxAs, Ge, and Sn doped, had been analyzed at different temperatures, from 10 to 300 K, and different modulator laser power. We also present a morphology study of the GaInAsSb quaternary material, and the process to determine the optimal growth parameters for the epitaxial layers with good crystalline quality.

https://doi.org/10.18257/raccefyn.27(104).2003.2076

Keywords

Semiconductors | photoluminescence | epitaxial growth | photoreflectance
PDF (Español (España))

References

André, R. & Le Si Dang. 1997. Low-temperature refractive indices of Cd1-xMnxTe and Cd1-yMgyTe, J. Appl. Phys. 82: 5086.

Bouhafs, B., Aorag, H., Ferhat, M., Zaoui, A., Certier, M. 1997. Theoretical analysis of disorder effects on electronic and optical properties in InGaAsP quaternary alloy, J. Appl. Phys. 82: 4923.

Chen, W., Wang, Z., Lin Z. & Lin, L. 1997. Thermoluminescence of ZnS nanoparticles, Appl. Phys. Lett. 70: 1465.

Cohen, M.L. & Chelikowsky, J.R. 1989. Electronic Structure and Optical Properties of semiconductors, edited by M. Ca, Springer Series in Solid-State Sciences 75 New York.

Feng, Z.C., Burke, M.G. & Choyke, W.J. 1988. Appl. Phys. Lett. 53: 128.

Fonthal, G. 2001. Estudio de la Impurificación de Capas Epitaxiales de GaAs y AlGaAs en el rango de leve hasta fuerte dopaje, por medio de fotoluminiscencia y fotorreflectancia. Tesis Doctoral, Universidades del Quindío y del Valle.

Godoy, A., Jiménez-Tejada, J.A., Palma, A. & Cartujo, P. 1997. Influence of the doping profile and deep level trap characteristics on generation-recombination noise, J. Appl. Phys. 82 (7): 3351.

J. J. Hsieh. 1974. Thickness and surface morphology of GaAs LPE layers grown by supercooling, stepcooling, equilibrium-cooling and two-phase solution techniques, J. Cryst. Growth, 27: 49-61.

Lastras-Martínez, A., Balderas-Navarro, R.E., Lastras-Martínez, L.F. & Cantú Alejandro, P. 1999. Photoreflectance spectroscopy of CdTe(001) around E1 and E1 + D1: Linear electro-optic spectrum, J. Appl. Phys. 86: 2062.

Lee, J., Giles, N.C., Rajavel, D. & Summers, C.J. 1995. Donor-acceptor pair luminescence involving the iodine A center in CdTe, J. Appl. Phys. 78: 5669.

M. Soltani, M. Certier, R. Evrard & E. Kartheuser. 1995. Photoluminescence of CdTe doped with arsenic and antimony acceptors, J. Appl. Phys. 78: 5626.

Nelson, H. 1963. Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes, RCA Rev. 603: 24.

Pankove, J.I., 1971. Optical processes in Semiconductors, Prentice-Hall, Inc. New Jersey.

Pavesi, L. & Guzzi, M. 1994. Photoluminescence of AlxGa1-xAs alloys, J. Appl. Phys. 75: 4779.

Perkowitz, S. 1993. Optical Characterization of Semiconductors: Infrared, Raman and Photoluminescence Spectroscopy, Academic Press London.

Peters, M.G., Fahrenbruch, A.L. & Bube, R.H. 1988. Deposition and properties of zinc cadmium telluride films, J. Vac. Sci. Technol. A 6: 3098.

Sánchez-Almazan, F.G., Navarro-Contreras, H., Ramírez-Flores, G., Vidal, M.A., Zelaya-Ángel, O., Rodríguez, M.E. & Baquero, R. 1996. Temperature dependence of the band gap of Cd1–xZnxTe alloys of low zinc concentrations, J. Appl. Phys. 79: 7713.

Schuppler, S., Adler, D.L., Pfeiffer, L.N., West, K.W., Chaban, E.E. & Citrin, P.H. 1995. Identifying and quantifying point defects in semiconductors using x-ray-absorption spectroscopy: Si-doped GaAs, Phys. Rev. B 51 (16): 10527.

Segura, J.A. 2003. Fabricación del material semiconductor Ga1-xInxAsySb1-y por la técnica de epitaxia en fase líquida. Trabajo de grado Ingeniería Electrónica. Universidad del Quindío.

Seraphin, A.A., Ngiam S.T. & Kolenbrander, K.D. 1996. Surface control of luminescence in silicon nanoparticles, J. Appl. Phys. 80: 6429.

Shim, K., Rabitz, H. & Dutta. 2000. Band gap and lattice constant of GaxIn1-xAsySb1-y, P., J. Appl. Phys, 88: 7157.

Suesawa, M., Kasuya, A., Nishina, Y. & Sumino, K. 1991. Opticalstudies of heat-treated Si-doped GaAs bulk crystals, J. Appl.Phys. 69 (12): 1618.

Tirado, L. 1999. Fabricación y caracterización de películas delgadassemiconductoras de Cd1-x-Ax-Te. Tesis Doctoral. Universi-dades del Quindío y del Valle.

Torres-Delgado, G., Castanedo-Pérez, R., Díaz-Arenciba, P.,Mendoza-Álvarez, J.G., Orozco-Vilchis, J. L., Murillo-Lara,M & Serra-Jones. 1995. Low temperature photoluminescencestudy in AlxGa1–xAs alloys in the indirect band gap region (x ³0.4), A., J. Appl. Phys. 78: 5090.

Torres-Delgado, G., Mendoza-Álvarez, J.G, López-Vásquez, C. &Alejo-Armenta, C., 1997. Photoluminescence andphotoreflectance studies of defects in GaAs epitaxial layersgrown by liquid phase epitaxy at different supercoolingtemperatures, J. Vac. Sci. Technol. A15: 971-975.

Wang, C.A.,Choi,H. K., Oakley, D.C. & Charache, G.W. 1998.Recent progress in GaInAsSb thermophotovoltaics grown byorganometallic vapor-phase epitaxy, J. Cryst. Growth 195: 346.

Wicks, G., Wang, W.I., Wood, C. E. C., Eatsman, L. F. & Rathbum,L. 1981.Photoluminescence of AlxGa1–xAs grown by molecularbeam epitaxy, J. Appl. Phys. 52: 5792.

Yu, P. & Cardona, M. 1996. Fundamentals of Semiconductors, edi-torial Springer-Verlag, p. 311 Berlín.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0