A MODAL LOGIC FOR LOBACHEVSKY'S PLANE GEOMETRY
PDF (Español (España))

How to Cite

Ríder Moyano , . A. ., & Rubio Ruiz, R. M. . (2023). A MODAL LOGIC FOR LOBACHEVSKY’S PLANE GEOMETRY. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 28(106), 87–94. https://doi.org/10.18257/raccefyn.28(106).2004.2023

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

Incidence geometries typically rely on two-sorted structures of points and lines connected by a relationship. Here, we introduce a one-sorted structure called the "Lobachevski frame" that serves as a suitable semantic foundation for modal language consideration. We construct an axiomatic system for this language, determined by the created structure.

https://doi.org/10.18257/raccefyn.28(106).2004.2023

Keywords

Modal Logic | Lobachevski Geometry
PDF (Español (España))

References

Balbiani P. The modal multilogic of geometry, J. of Applied Nonclassical Logics, 8(1998), 259–281.

Balbiani P., V. Dugat, L. Fariñas del Cerro & A. López. Éléments de Géométrie Mécanique. Hermès, 1994.

Ph. Balbiani, L. Fariñas del Cerro, T. Tinchev & D. Vakarelov. Modal Logic for incidence geometries. Journal of Logic and Computation, 7 (1997), 59–78.

Blumental L. A modern view of Geometry. Dover.

Coxeter H. Fundamentos de Geometría. Limusa.

Gabbay D. An irreflexivity lemma with applications to axiomatizations of conditions on tense frames. In Aspects of Philosophical Logic, U. Mönich, ed. pp. 67-89. Reidel, 1981.

Gabbay D. & I. Hodkinson. An axiomatization of the temporal logic with until and since over the real numbers. Journal of Logic and Computation, 1 (1990), 229–259.

Gabbay D., I. Hodkinson & M. Reynolds. Temporal Logic: Mathematical Foundations and Computational Aspects, Vol. I. Oxford University Press, 1995.

Hilbert D. Les Fondements de la Géométrie. Dunod, Paris, 1971.

Hughes G. & M. Cresswell. A companion to Modal Logic. Methuen, London, 1984.

Jacobson N. Basic Algebra II. W. H. Freeman and Company, New York, 1980.

Marx M. Complexity of modal logics of relations. Technical Report ML–97–02, Institute for logic, Language and Computation, University of Amsterdam, 1997.

Marx M. & Y. Venema. Multidimensional Modal Logic. Kluwer Academic Publishers, Dordrecht, 1997.

Rijke M. The modal logic of inequality. Journal of Symbolic Logic, 57 (1992), 566–584.

Sahlqvist H. Completeness and correspondence in the first and second order semantics for modal logic. In Proceedings of the Third Scandinavian Logic Symposium, Uppsala, Sweden. 1973, s. Kanger, ed. pp: 110–118. North-Holland. Amsterdam, 1975.

Patrick Blackburn, Mararten de Rijke & Y de Venema. Modal Logic. Cambridge University Press, United Kingdom, 2001.

Vakarelov D. A modal theory of arrow. In Proceedings of the logic in AI. European Workshop JELIA’ 92. Berlin, Germany, September 1992. D. Pearce and G. Wagner. eds. pp. 1-24. Vol. 633 of Lectures Notes in Artificial Intelligence. Springer-Verlag, Berlin 1992.

Venema Y. Modal derivation rules. ITLI prepublication series for mathematical logic and foundations ML–01–07, University of Amsterdam. Amsterdam, 1991.

Venema Y. Many dimensional Modal Logic. Doctoral dissertation. University of Amsterdam, 1992.

Venema Y. Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic, 58 (1993), 1003–1034.

Wright G. A modal logic of space. In The Philosophy of Nicholas Rescher, F. Sosa, ed. Reidel, Dordrecht, 1979.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 https://creativecommons.org/licenses/by-nc-nd/4.0