Abstract
In this note we study the asymptotic behaviour of the number of rational places in a tower of function fields of Artin-Schreier type over a finite field with 2s elements, where s > 0 is an odd integer.
Keywords
References
Beelen, P., Garcia, A., & Stichtenoth, H. (2004). On towers of function fields of Artin-Schreier type. Bulletin of the Brazilian Mathematical Society, 35(2), 151–164.
Beelen, P., Garcia, A., & Stichtenoth, H. (2006). Towards a classification of recursive towers of function fields over finite fields. Finite Fields and Their Applications, 12(1), 56–77.
Chara, M., Navarro, H., & Toledano, R. (2018). A problem of Beelen, Garcia and Stichtenoth on an Artin-Schreier tower in characteristic two. Acta Arithmetica, 182(), 311–330.
Chara, M., & Toledano, R. (2015). Asymptotically bad towers of function fields. Tokyo Journal of Mathematics, 38(2), 339–352.
Drinfel’d, V., & Vladut, S. (1983). Number of points of an algebraic curve. Functional Analysis and its Applications, 17(1), 53–54.
Garcia, A., & Stichtenoth, H. (1995). A tower of Artin-Schreier extensions of function fields attaining the drinfeld-vladut bound. Inventiones Mathematicae, 121(1), 211–222.
Garcia, A.,&Stichtenoth, H. (2000). Skew pyramids of function fields are asymptotically bad. In Coding theory, cryptography and related areas (pp. 111–113). Springer.
Ihara, Y. (1981). Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3), 721–724 (1982).
Ling, S., Stichtenoth, H., & Yang, S. (2005). A class of artin-schreier towers with finite genus. Bulletin of the Brazilian Mathematical Society, 36(3), 393–401.
Serre, J.-P. (1983). Sur le nombre des points rationnels d’une courbe alg´ebrique sur un corps fini. CR Acad. Sci. Paris, 296(Serie I), 397–402.
Stichtenoth, H. (2009). Algebraic function fields and codes (Vol. 254). Berlin: Springer-Verlag.
Tsfasman, M. A., Vladut, S., & Zink, T. (1982). Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound. Mathematische Nachrichten,109(1), 21–28.
Weil, A. (1948). Sur les courbes alg´ebriques et les vari´et´es qui s’en d´eduisent (No. 1041).Hermann.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2020 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales