El efecto de los aminoglucósidos sobre la transferencia horizontal de genes en Klebsiella pneumoniae
Portada 44 (170) 2020
PDF (English)

Archivos suplementarios

Tabla 1S

Cómo citar

Acosta, I. C., Posada, L., Huertas, M. G., & Zambrano Eder, M. M. . (2020). El efecto de los aminoglucósidos sobre la transferencia horizontal de genes en Klebsiella pneumoniae. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(170), 105–120. https://doi.org/10.18257/raccefyn.985

Descargas

Los datos de descargas todavía no están disponibles.

Métricas Alternativas


Dimensions

Resumen

Las bacterias resistentes a antibióticos representan un riesgo global para la salud pública. La transferencia horizontal de genes, que permite el intercambio de material genético en bacterias, tiene un papel importante en la adquisición de genes de resistencia. En este trabajo se evaluó el efecto de concentraciones subletales de antibióticos en la transferencia de plásmidos por conjugación y transformación en el patógeno oportunista Klebsiella pneumoniae. Aunque esta bacteria no es naturalmente competente, mostró capacidad para adquirir ADN extracelular de diversos plásmidos con muy baja frecuencia, la cual aumentó al incubar células con los antibióticos aminoglucósidos amikacina y gentamicina. La transferencia por conjugación, que se hizo con un aislamiento clínico portador del plásmido pNDM-1, también aumentó en presencia de concentraciones subletales de antibióticos. Un análisis de RNA- Seq evidenció la expresión diferencial de varios genes al incubar células en presencia de concentraciones subletales de amikacina, lo que indica cambios metabólicos, regulatorios y a nivel de componentes de la envoltura celular. Estos resultados revelan que la incubación en concentraciones subletales de algunos aminoglucósidos, en particular la amikacina, pueden alterar las propiedades celulares y promover la transferencia de elementos genéticos portadores de resistencias en K. pneumoniae, lo cual tiene relevancia para entender la diseminación de genes de resistencia en este patógeno humano.

https://doi.org/10.18257/raccefyn.985

Palabras clave

Klebsiella pneumoniae; Transferencia horizontal de genes; Resistencia a antibióticos, aminoglucósidos.
PDF (English)

Citas

Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural environments. Nat Rev Microbiol. 8 (4): 251-259.

Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A., Handelsman, J. (2009). Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 3 (2): 243-251.

Anders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11 (10): R106.

Andersson, D. I. & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 12 (7): 465-478.

Andrews, J. M. (2002). Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 49 (6): 1049-1049.

Baharoglu, Z., Krin, E., Mazel, D. (2013). RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae. PLoS Genet. 9 (4): e1003421.

Balestrino, D., Ghigo, J.-M., Charbonnel, N., Haagensen, J. A. J., Forestier, C. (2008). The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 10 (3): 685-701.

Barr, V., Barr, K., Millar, M. R., Lacey, R. W. (1986). β-Lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J Antimicrob Chemother. 17 (4): 409-413.

Barrero, L. I., Castillo, J. S., Leal, A. L., Sánchez, R., Cortés, J. A., Álvarez, C. A., González, A. L. (2014). Impacto económico de la resistencia a meticilina en pacientes con bacteriemia por Staphylococcus aureus en hospitales de Bogotá. Biomédica. 34 (3): 345-353.

Benjamini, Y. & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 57: 289-300.

Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E. D., Johnston, M. D., … Wright, G. D. (2012). Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLoS One. 7 (4): e34953.

Bloemberg, G. V, Wijfjes, A. H., Lamers, G. E., Stuurman, N., Lugtenberg, B. J. (2000). Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol Plant Microbe Interact. 13 (11): 1170-1176.

Blokesch, M. (2016). Natural competence for transformation. Curr Biol. 26 (21): R1126-R1130.

Bolger, A. M., Lohse, M., Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30 (15): 2114-2120.

Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., Pittet, D., Participants of the 3rd World Healthcare-Associated Infections Forum. (2012). Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control. 1 (1): 11.

Cienfuegos-Gallet, A. V, Ocampo-de Los Ríos, A. M., Sierra-Viana, P., Ramírez-Brinez, F., Restrepo-Castro, C., Roncancio-Villamil, G., … Jiménez, J. N. (2019). Risk factors and survival of patients infected with carbapenem-resistant Klebsiella pneumoniae in a KPC endemic setting: a case-control and cohort study. BMC Infect Dis. 19 (1): 830.

Clinical & Laboratory Standards Institute - CLSI. (2015). Performance standards for antimicrobial susceptibility testing: 25th informational supplement. In P. A. Wayne (Ed.), CLSI document M100-S25.

Cosgrove, S. E. (2006). The Relationship between Antimicrobial Resistance and Patient Outcomes: Mortality, Length of Hospital Stay, and Health Care Costs. Clin Infect Di. 42 (Supplement_2): S82–S89.

Cuzon, G., Naas, T., Correa, A., Quinn, J. P., Villegas, M.-V., Nordmann, P. (2013). Dissemination of the KPC-2 carbapenemase in non-Klebsiella pneumoniae enterobacterial isolates from Colombia. Int J Antimicrob Agents. 42 (1): 59-62.

D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., … Wright, G. D. (2011). Antibiotic resistance is ancient. Nature. 477 (7365): 457-461.

Dalhoff, A. A. (2018). Membrane Interactions of Antibacterial Agents. Trends Clin Microbiol. 1 (1): 04–48.

Escobar-Pérez, J. A., Olarte-Escobar, N. M., Castro-Cardozo, B., Valderrama-Márquez, I. A., Garzón-Aguilar, M. I., Martínez-de la Barrera, L., … Vanegas-Gómez, N. (2013). Outbreak of NDM-1-producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrob Agents Chemother. 57 (4): 1957-1960.

Finkel, S. E. & Kolter, R. (2001). DNA as a nutrient: Novel role for bacterial competence gene homologs. J Bacteriol. 183 (21): 6288-6293.

Frost, L. S. & Koraimann, G. (2010). Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5 (7): 1057-1071.

Gaze, W. H., Krone, S. M., Larsson, D. G. J., Li, X.-Z., Robinson, J. A., Simonet, P., Zhu, Y.-G. (2013). Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerg Infect Dis. 19 (7): e120871.

Harrison, J. J., Stremick, C. a, Turner, R. J., Allan, N. D., Olson, M. E., Ceri, H. (2010). Microtiter susceptibility testing of microbes growing on peg lids: A miniaturized biofilm model for high-throughput screening. Nat Protoc. 5 (7): 1236-1254.

Hawser, S. P., Bouchillon, S. K., Hoban, D. J., Hackel, M., Johnson, J. L., Badal, R. E. (2009). Klebsiella pneumoniae isolates possessing KPC β-lactamase in Israel, Puerto Rico, Colombia and Greece. Int J Antimicrob Agents. 34 (4): 384-385.

Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A., Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 436 (7054): 1171-1175.

Holt-Harris, J. E. & Teague, O. (1916). A new culture medium for the isolation of Bacillus typhosus from stools. J Infect Dis. 18 (6): 596-600.

Huertas, M. G., Zárate, L., Acosta, I. C., Posada, L., Cruz, D. P., Lozano, M., Zambrano, M. M. (2014). Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility. Microbiology. 160: 2595-2606.

Instituto Nacional de Salud (INS). Resultados del Programa de Vigilancia por Laboratorio de Resistencia antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2016. Accessed on Nov, 2019. https://www.ins.gov.co/buscador-eventos/Informacin%20de%20laboratorioInforme%20Vigilancia%20por%20Laboratorio%20Resistencia%20Antimicrobiana%20y%20Whonet%20IAAS%202016.pdf

Jacoby, G. A. & Han, P. (1996). Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol. 34 (4): 908-911.

Jones, R. N., Guzmán-Blanco, M., Gales, A. C., Gallegos, B., Castro, A. L. L., Martino, M. D. V., … Castanheira, M. (2013). Susceptibility rates in Latin American nations: Report from a regional resistance surveillance program (2011). Brazilian J Infect Dis. 17 (6): 672-681.

Jutkina, J, Marathe, N. P., Flach, C.-F., Larsson, D. G. J. (2018). Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ. 616-617: 172-178.

Jutkina, J., Rutgersson, C., Flach, C.-F., Joakim-Larsson, D. G. (2016). An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci Total Environ. 548-549: 131-138.

Kado, C. I. & Liu, S. T. (1981). Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 145 (3): 1365-1373.

Kopylova, E., Noé, L., Touzet, H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 28 (24): 3211-3217.

Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F., Balakrishnan, R., … Woodford, N. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect Dis. 10 (9): 597-602.

Landecker, H. (2016). Antibiotic Resistance and the Biology of History. Body Soc. 22 (4): 19-52. Leal, A.L. (2016). Boletín GREBO, Número 9, Bogotá, 2016, ISSN 2027- 0860. Bogotá.

Lee, C.-R., Lee, J. H., Park, K. S., Jeon, J. H., Kim, Y. B., Cha, C.-J., … Lee, S. H. (2017). Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front Cell Infect Microbiol. 7: 483.

Lin, J. T., Connelly, M. B., Amolo, C., Otani, S., Yaver, D. S. (2005). Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob Agents Chemother. 49 (5): 1915-1926.

Liu, G., Bogaj, K., Bortolaia, V., Olsen, J. E., Thomsen, L. E. (2019). Antibiotic-Induced, Increased Conjugative Transfer Is Common to Diverse Naturally Occurring ESBL Plasmids in Escherichia coli. Front Microbiol. 10: 2119.

Maeda, S., Ito, M., Ando, T., Ishimoto, Y., Fujisawa, Y., Takahashi, H., … Kato, S. (2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett. 255 (1): 115-120.

Marti, E., Variatza, E., Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22 (1): 36-41.

McClure, R., Balasubramanian, D., Sun, Y., Bobrovskyy, M., Sumby, P., Genco, C. A., … Tjaden, B. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res. 41 (14): e140-e140.

Mielich-Süss, B. & Lopez, D. (2015). Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol. 17 (3): 555-565.

Ministerio de Salud. (2018). Plan nacional de respuesta a la resitencia a los antimicrobianos. Plan estratégico. Bogotá.

Ortiz-Mayorga, J. L., Pineda-Rodríguez, I. G., Dennis, R. J., Porras, A. (2019). Costos atribuidos a las infecciones asociadas con la atención en salud en un hospital de Colombia, 2011-2015. Biomédica. 39 (1): 102-112.

Palchevskiy, V. & Finkel, S. E. (2006). Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol. 188 (11): 3902-3910.

Pendleton, J. N., Gorman, S. P., Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 11 (3): 297-308.

Pfeltz, R. F., Schmidt, J. L., Wilkinson, B. J. (2001). A microdilution plating method for population analysis of antibiotic-resistant staphylococci. Microb Drug Resist. 7 (3): 289-295.

Posada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A.-M., Hernández, F., … Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Sci Rep. 9(1): 11764.

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., Glockner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35 (21): 7188-7196.

Rada, A. M., Hernández-Gómez, C., Restrepo, E., Villegas, M. V. (2019). Distribución y caracterización molecular de betalactamasas en bacterias Gram negativas en Colombia, 2001-2016. Biomédica. 39: 199-220.

Rasheed, J. K., Anderson, G. J., Yigit, H., Queenan, A. M., Domenech-Sánchez, A., Swenson, J. M., … Tenover, F. C. (2000). Characterization of the Extended-Spectrum beta -Lactamase Reference Strain, Klebsiella pneumoniae K6 (ATCC 700603), Which Produces the Novel Enzyme SHV-18. Antimicrob Agents Chemother. 44 (9): 2382-2388.

Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., … Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ. 447: 345-360.

Rodríguez-Rojas, A., Rodríguez-Beltrán, J., Couce, A., Blázquez, J. (2013). Antibiotics and antibiotic resistance: A bitter fight against evolution. Int J Med Microbiol. 303 (6-7): 293-297.

Rojas, L. J., Mojica, M. F., Blanco, V. M., Correa, A., Montealegre, M. C., De La Cadena, E., … Villegas, M. V. (2013). Emergence of Klebsiella pneumoniae coharboring KPC and VIM carbapenemases in Colombia. Antimicrob Agents Chemother. 57: 1101-1102.

Shon, A. S., Bajwa, R. P. S., Russo, T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Virulence. 4 (2): 107-118.

Shun-Mei, E., Zeng, J.-M., Yuan, H., Lu, Y., Cai, R.-X., Chen, C. (2018). Sub-inhibitory concentrations of fluoroquinolones increase conjugation frequency. Microb Pathog. 114: 57-62.

Skippington, E. & Ragan, M. A. (2011). Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev. 35 (5): 707-735.

Suescún, A. V., Cubillos, J. R., Zambrano, M. M. (2006). Genes involucrados en la biogénesis de fimbrias afectan la formación de biopelículas por parte de Klebsiella pneumoniae. Biomédica. 26: 528-537.

Sun, D., Zhang, Y., Mei, Y., Jiang, H., Xie, Z., Liu, H., … Shen, P. (2006). Escherichia coli is naturally transformable in a novel transformation system. FEMS Microbiol Lett. 265 (2): 249-255.

Van Laar, T. A., Chen, T., You, T., Leung, K. P. (2015). Sublethal Concentrations of Carbapenems Alter Cell Morphology and Genomic Expression of Klebsiella pneumoniae Biofilms. Antimicrob Agents Chemother. 59 (3): 1707-1717.

Venkatachalam, I., Teo, J., Balm, M. N. D., Fisher, D. A., Jureen, R., Lin, R. T. P. (2012). Klebsiella pneumoniae carbapenemase-producing enterobacteria in hospital, Singapore. Emerg Infect Dis. 18 (8): 1381-1383.

Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. P T. 40 (4): 277-283. World Health Organization, WHO. (2016). WHO | Global action plan on AMR. Accessed on: July 2019. Retrieved from: https://www.who.int/antimicrobial-resistance/global-action-plan/en/Yanisch-Perron, C., Vieira, J., Messing, J. (1985). Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 33 (1): 103-119.

Zhang, Y., Shi, C., Yu, J., Ren, J., Sun, D. (2012). RpoS regulates a novel type of plasmid DNA transfer in Escherichia coli. PLoS One. 7 (3): e33514.

Declaración de originalidad y cesión de derechos de autor

Los autores declaran:

  1. Los datos y materiales de referencia publicados han sido debidamente identificados con sus respectivos créditos y han sido incluidos en las notas bibliográficas y citas que así se han identificado y que de ser requerido, cuento con todas las liberaciones y permisos de cualquier material con derechos de autor.
  2. Todo el material presentado está libre de derechos de autor y acepto plena responsabilidad legal por cualquier reclamo legal relacionado con la propiedad intelectual con derechos de autor, exonerando completamente de responsabilidad a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales.
  3. Este trabajo es inédito y no será enviado a ninguna otra revista mientras se espera la decisión editorial de esta revista. Declaro que no hay ningún conflicto de intereses en este manuscrito.
  4. En caso de publicación de este artículo, todos los derechos de autor son transferidos a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, por lo que no puede ser reproducido de ninguna forma sin el permiso expreso de la misma.
  5. Mediante este documento, si el artículo es aceptado para publicación por la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, la Revista asume el derecho de editar y publicar los artículos en índices o bases de datos nacionales e internacionales para académicos y uso científico en formato papel, electrónico, CD-ROM, internet ya sea del texto completo o cualquier otra forma conocida conocida o por conocer y no comercial, respetando los derechos de los autores.

Transferencia de derechos de autor

En caso de que el artículo sea aprobado para su publicación, el autor principal en representación de sí mismo y sus coautores o el autor principal y sus coautores deberán ceder los derechos de autor del artículo correspondiente a la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, excepto en los siguientes casos:

Los autores y coautores se reservan el derecho de revisar, adaptar, preparar trabajos derivados, presentaciones orales y distribución a algunos colegas de reimpresiones de su propio trabajo publicado, si se otorga el crédito correspondiente a la Revista de la Academia Colombiana de Ciencias. Exactas, Físicas y Naturales. También está permitido publicar el título de la obra, resumen, tablas y figuras de la obra en los sitios web correspondientes de los autores o sus empleadores, dando también crédito a la Revista.

Si el trabajo se ha realizado bajo contrato, el empleador del autor tiene el derecho de revisar, adaptar, preparar trabajos derivados, reproducir o distribuir en papel el trabajo publicado, de manera segura y para uso exclusivo de sus empleados.

Si la Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales fuera solicitada por un tercero para el uso, impresión o publicación específica de artículos ya publicados, la Revista debe obtener el permiso expreso del autor y coautores de la trabajo o del empleador excepto para uso en aulas, bibliotecas o reimpreso en un trabajo colectivo. La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales se reserva el posible uso en su portada de figuras entregadas con los manuscritos.

La Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales no puede reclamar ningún otro derecho que no sea el de autor.