Magnetic transition of ytterbium atoms confined in optical superlattice with local ferromagnetic interaction
PDF

How to Cite

Ramírez, D.-F., Franco, R., & Silva-Valencia, J. (2024). Magnetic transition of ytterbium atoms confined in optical superlattice with local ferromagnetic interaction . Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 37(Suplemento), 44–49. https://doi.org/10.18257/raccefyn.2583

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

We used the density matrix renormalization group to study the ground state of ytterbium atoms (171Yb) for the Hund lattice model, where the delocalized atoms are confined in a onc-dimensional optical superlattice and his number is one third of the lattice sites. We found a paramagnetic-ferromagnetic quantum phase transition for any value of the potential strength. The local critical ferromagnetic coupling decreases as the superlattice potential increases.

https://doi.org/10.18257/raccefyn.2583

Keywords

Hund lattice model | ferromagnetic coupling | heavy fermions
PDF

References

Greiner, M., Mandel, O., Esslinger, T, Hinsch, T. W., Bolch, I, 2002, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39.

Schneider, U., Hackermiler, L., Will, S., Best, Th., Bloch, L, Costi, T.A., Helmes, R. W,, Rash, D., 2008, Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice, Science 322, 1520.

Júrdens, R., Strohmaier, N., Giiner, K., Moritz, H., Esslinger, T., 2008, A Mott insulator of fermionic atoms in optical lattice, Nature 455,204.

Jané, E., Plenio, M. B., Jonathan, D., 2002, Quantum-information processing in strongly detuned optical cavities, Phys. Rev. A 65, 050302.

Courteille, Ph., Freeland, R. S., Heinzen, D. J., 1998, Observation of a Feshbach Resonance in Cold Atom Scattering, Phys. Rev. Lett. 81, 69.

Markus, O,, Greiner, M., Widere, A., Rom, T., Haensch T. W., Bloch, 1., 2013, Coherent transport of neutral atoms in spin-dependent optical lattice potentials, cond-mat/0301169.

Jakseh, D., Cirac, J. L, Zoller, P., 2002, Dynamically turning off interactions in a two-component condensate, Phys. Rev. A 65, 033625.

Guidonh, L., Verkerk, P., 1998, Direct observation of atomic localization in optical superlattices, Phys. Rev. A 57, R1501 (1998); Gorlitz, A., Kinoshita, T, Hanseh T. W., Hemmerich, A., 2001, Realization of bichromatic optical superlattices, ibid. 64, 011401.

Gorshkov, A.V., Hermele, M., Gurarie, V., Xu, C., Julienne, PS., Ye, J., Zoller, P., Demler, E., Lukin, M.D., Rey, A.M., 2010, Two-orbital Su(N) magnetism with ultracold alkaline-earth atoms, Nature Phys. 6, 289.

Kugel, K.L, Khomskii, D.L, 1973, Crystal Structure and magnetic properties of substance with orbital degeneracy, Sov. Phys. JETP 37, 725.

Manmana, S.R., Hazard, K. R. A, Chen, G., Feiguin, A.E., Rey, A. M., 2011, SU(N) magnetism in chains of ultracold alkaline-earth-metal atoms: Mott transitions and quantum correlations Phys. Rev. A 84, 043601.

Tsunetsugu, EL, Sigrist, M., Ueda, K., 1997, The ground-state phase diagram of the one-dimensional Kondo lattice model, Rev. Mod. Phys. 69, 809.

Shibata, N., Ueda, K., 1999, J. Phys.: Condens. Matter 11 R1.

Garcia, D. 1., Hallberg, K., Alascio, B., Avignon, M., 2004, Spin Order in One-Dimensional Kondo and Hund Lattices, Phys. Rev. Lett.93, 177204.

Tsunetsugu, H., Hatsugai, Y, Sigrist, M., 1992, Spin-liquid ground state of the half-filled Kondo lattice in one dimension, Phys. Rev. B 46, 3175.

Peters, R, Kawakami, N., 2012, Ferromagnetic state in the one-dimensional Kondo lattice model, Phys. Rev. B 86, 165107.

Foss-Feig, M., Hermele, M., Gurarie, V., Rey, A. M., 2010, Probing the Kondo lattice model with alkaline-earth-metal atoms, Phys. Rev. A 81, 053624.

Shishido, H., Shibauchi, T., Yasu, K., Kato, T., Kontani, H., Terashima, T., Matsuda, Y., 2010, Tuning the Dimensionality of the Heavy Fermion Compound CeJn3, Science 372, 980.

Kim, S., Razegi, M., 2001, Advances in quantum dot structures. In: Processing and Properties of Compound Semiconductors, ed. by Willardson, K., Weber, E.R.. Academic, New York.

Babak Ziaie, Antonio Baldi, Massood Z. Atashbar, 2010, Introduction to micro-Nanofabrication. In: Springer Handbook of Nanotechnology, ed. by Bhushan, B., Springer Berlin Heidelberg.

Wihite, S. R., 1992, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863.

Silva-Valencia, J., Franco, R, Figueira, M.S., 2013, Quantum phase transition of alkaline-earth fermionic atoms confined in an optical superlattice, Physics Letters A. 377, 643.

Gulacsi, M., 2004, The one-dimensional Kondo lattice model at partial band filling, Advances in physics 53, 769.

Hayes, D., Julienne, P. S., Deutsch, L. H., 2007, Quantum Logic via the Exchange Blockade in Ultracold Collisions, Phys. Rev. Lett. 95, 070501.

Daley, A. J. , Boyd, M. M., Ye, J., Zoller, P., 2008, Quantum Computing with Alkaline-Earth-Metal Atoms, Phys. Rev. Lett. 101, 170504.

Grimm, R., Weidemuller, M, Ovehinnikov, Y. B., 2000, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95-170.

Millis, A. J., Littlewood, P. B., and Shraiman, B. K., 1995, Phys. Rev. Lett, 74, 5144.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 https://creativecommons.org/licenses/by-nc-nd/4.0