LESSONS OF TUBERCULOSIS
PDF (Español (España))

How to Cite

García Moreno, L. F. (2023). LESSONS OF TUBERCULOSIS. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 36(139), 211–217. https://doi.org/10.18257/raccefyn.36(139).2012.2443

Downloads

Download data is not yet available.

Métricas Alternativas


Dimensions

Abstract

The history of science shows that the scientific advancements in a particular area may impact the development of other areas of knowledge. This work presents a historical review of the way in which research on tuberculosis has led to the discovery and better understanding of the immune response, not necessarily related to tuberculosis. Phenomena like T-cell mediated immunity, delayed hypersensitivity, genetics of the resistance and susceptibility to infections and the presentation of protein and non-protein antigens have been understood thanks to findings in the tuberculosis model.  Additionally, the delayed hypersensitivity tests and the adjuvants were developed through research in tuberculosis. Given that this disease continues to be one of the major public health problems worldwide and that its control would require intensive scientific research it is possible to foresee that it will continue teaching us about important biological phenomena, even beyond the tuberculosis boundaries.

https://doi.org/10.18257/raccefyn.36(139).2012.2443

Keywords

tuberculosis | immune response | history
PDF (Español (España))

References

Baghdadi, J. E., M. Orlova, A. Alter, B. Ranque, M. Chentoufi, F. Lazrak, M. i. Archane, J. l. Casanova, A. Benslimane, e. schurr l. Abel. 2006. An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J. Exp. Med. 203:1679-1684

Beckman, e. M., s. A. Porcelli, C. t. Morits, s. M. Behar, s. furlong, M. B. Brenner. 1994. Recognition of a lipid antigen by CD1-restricted ab+ T cells. Nature 372:691-694.

Burgner, d., s. e. Jamieson, J. M. Blackwell. 2006. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet Infect. Dis. 6:653-663.

Chase, M. w. 1946. The cellular transfer of cutaneous hypersensitivity. J. Bacteriol. 51:643.

Cobat, A., C. J. Gallant, l. simkin, G. f. Black, K. stanley, J. Hughes, t. M. doherty, w. A. Hanekom, B. eley, J. P. Jais, A. Boland-Auge, P. van Helden, J. l. Casanova, l. Abel, e. G. Hoal, e. schurr, A. Alcais. 2009. Two loci control tuberculin skin test reactivity in an area hyperendemic for tuberculosis. J. Exp. Med. 206:2583-2591.

Comas, i., J. Chakravartti, P. M. small, J. Galagan, s. Niemann, K. Kremer, J. d. ernst, s. Gagneux. 2010. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat. Genet. 42:498-503.

Coombs, r. r. 1968. Immunopathology. Br.Med.J. 1:597-602. de Gregorio, e., U. d’oro, A. wack. 2009. Immunology of TLR-independent vaccine adjuvants. Cur. Op. Immunol. 21:339-345.

Freund, J., M. M. lipton, l. r. Morrison. 1950. Demyelination in the guinea pig in chronic allergic encephalomyelitis produced by injecting guinea pig brain in oil emulsion containing a variant of mycobacterium butyricum. Arch.Pathol.(Chic.) 50:108-121.

Freund, J., K. Mcdermott. 1942. Sensitization to Horse Serum by Means of Adjuvants. Proc. Soc. Exp. Biol. Med. 49:548-553.

Gagneux, s., P. M. small. 2007. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis. 7:328-337.

Landsteiner, K., M. w. Chase. 1942. Experiments on Transfer of Cutaneous Sensitivity to Simple Compounds. Proc. Soc. Exp. Biol. Med. 49:688-690.

Mackaness, G. B. 1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120:105-120.

Miller, J. f. A. P. 1999. Discovering the origins of immunological competence. Ann. Rev. Immunol. 17:1-18.

Nathan, C. f., M. l. Karnovsky, J. r. david. 1971. Alterations of macrophage functions by mediators from lymphocytes. J. Exp. Med. 133:1356-1376.

Pan, H., B. s. Yan, M. rojas, Y. V. shebzukhov, H. Zhou, l. Kobzik, d. e. Higgins, M. J. daly, B. r. Bloom, i. Kramnik. 2005. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767-772.

Quintana-Murci, l., A. Alcais, l. Abel, J. l. Casanova. 2007. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat.Immunol. 8:1165-1171.

Rosenthal, A. s., e. M. shevach. 1973. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J. Exp. Med. 138:1194-1212.

Shevach, e. M., A. s. rosenthal. 1973. Function of macrophages in antigen recognition by guinea pig T lymphocytes. II. Role of the macrophage in the regulation of genetic control of the immune response. J. Exp. Med. 138:1213.

Skamene, e., P. Gros, A. forget, P. A. l. Kongshavn, C. st.Charles, B. A. taylor. 1982. Genetic regulation of resistance to intracellular pathogens.Nature 297:506-509.

Vilaplana, C., P. J. Cardona. 2010. Tuberculin immunotherapy: its history and lessons to be learned. Microbes Infect 12:99-105.

Zinkernagel, r. M., P. C. doherty. 1975. H-2 compatibility requirement for T cell mediated lysis of target cells infected with lymphocytic chriomeningitis virus. Different cytotoxic T cell specificities are associated with structures coded for in H-2K or H-2D. J. Exp. Med. 141:1427.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales