

REVISTA DE LA ACADEMIA COLOMBIANA DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES

www.raccefyn.co

Información suplementaria

Upper Pleistocene deposits from the Cauca Valley

Depósitos del Pleistoceno Superior en el Valle del Rio Cauca

Carlos Jaramillo, Gheny Krigsfeld Shuster, Carlo D. Rojas, Alexander Henao, Germán Y. Ojeda, Dayenari Caballero, Sebastian Escobar-Flores, Sebastian Gomez, Jaime Escobar

Corresponding author: Carlos Jaramillo, jaramilloc@si.edu

Contenido

- Figures S1 to S13
- Tables S1 to S3
- Supplementary Information S1 to S2

Figure S1. A. Small fragment of the original vegetation that once covered the Cauca valley before the sugar-cane plantations. B. The meandering Cauca river and its flat valley. Several dredges can be seen in the center of the river. Notice how most of the original vegetation has been replaced by sugar cane plantations. C. Dredge facilities at Paso La Torre. D. Bucket-style dredge in Platanares. E-F. Convey-style dredge in Paso La Torre (Photos by C. Ziegler).

Figure S2. Simplified model of Seismic Refraction Method (Modified from Reynolds, 1997).

Figure S3. Left: Raw marine seismic refraction record from the Platanares area. Note poor signal to noise ratio, making interpretation difficult beyond the first 5 channels. Right: Raw land seismic refraction record from the Platanares area. Note the excellent signal to noise ratio and sharpness of first arrivals.

Figure S4. Simplified model of ERT Method (Modified from Everett, 2013).

Figure S5. Inverted Resistivity Section of the L1-ERT (See location in Figure 7)

Figure S6. Inverted Resistivity Section of the L2-ERT (See location in Figure 7).

Figure S7. Inverted Resistivity Section of the L3-ERT (See location in Figure 7).

Figure S8. Inverted Resistivity Section of the L5-ERT (See location in Figure S9).

Figure S9. Subsurface model of the fossil-rich layer top at Intermediate Area 1. Coordinates in Magna Sirgas Colombia West Zone

Figure S10. Top: Field seismic record from Line 14 acquired at Intermediate Area 2, showing interpreted first break. Bottom: layer model for Line 14. See Figure S11 for location.

Figure S11. Subsurface model of the fossil-rich layer top at Intermediate Area 2. The cross symbol indicates the point where a dredging tool confirmed the presence, depth, and fossil content of the conglomerate layer. Coordinates in Magna Sirgas Colombia West Zone.

Figure S12. Inverted Resistivity Section of the L6-ERT (See location in Figure 9).

International Chemical Analysis Inc.

1951 NW 7th Ave STE 300 Miami, FL U.S.A 33136

Summary of Ages

<u>Submitter Name</u>: Carlos Jaramillo <u>Company Name</u>: Smithsonian Tropical Research Institute <u>Address</u>: 9100 Panami City PL, Washington DC 20521

ICA ID	Submitter ID	Material Type	Pretreatment	Conventional Age	Calibrated Age
17W/1049	STRI 44179	Wood	AAA	>40.000 BP	
17W/1050	STRI 44177	Wood	ААА	37010 +/- 400 BP	Cai 40250 - 38890 BC
17W/1051	STRI 44176	Wood	AAA	11890 +/- 40 BP	Cal 11830 - 11630 BC

- Calibrated ages are attained using INTCAL13: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Paula J Reimer, Edouard Bard, Alex Bayliss, J Warren Beck, Paul G Blackwell, Christopher Bronk Ramsey, Caitlin E Buck, Hai Cheng, R Lawrence Edwards, Michael Friedrich, Pieter M Grootes, Thomas P Guilderson, Haflidi Haflidason, Irka Hajdas, Christine Hatté, Timothy J Heaton, Dirk L Hoffmann, Alan G Hogg, Konrad A Hughen, K Felix Kaiser, Bernd Kromer, Sturt W Manning, Mu Niu, Ron W Reimer, David A Richards, E Marian Scott, John R Southon, Richard A Staff, Christian S M Turney, Johannes van der Plicht. Radiocarbon 55(4), Pages 1869-1887.

- Unless otherwise stated, 2 sigma calibration (95% probability) is used.

- Conventional ages are given in BP (BP=Before Present, 1950 AD), and have been corrected for fractionation using the delta C13.

International Chemical Analysis Inc.

1951 NW 7th Ave STE 300 Miami, FL U.S.A 33136

Sample Report

Submitter Name:Carlos JaramilloCompany Name:Smithsonian Tropical Research InstituteAddress:9100 Panami City PL, Washington DC 20521

Date Received	ate Received October 04, 2017		Wood
Date Reported November 13, 2017		Pre-treatment	AAA
ICA ID 17W/1049		Conventional Age	>40.000 BP
Submitter ID	STRI 44179	Calibrated Age	

International Chemical Analysis Inc. 1951 NW 7th Ave STE 300 Miami, FL U.S.A 33136

Sample Report

Submitter Name:Carlos JaramilloCompany Name:Smithsonian Tropical Research InstituteAddress:9100 Panami City PL, Washington DC 20521

Date Received	October 04, 2017	Material Type	Wood
Date Reported	November 13, 2017	Pre-treatment	AAA
ICA ID	17W/1050	Conventional Age	37010 +/- 400 BP
Submitter ID	STRI 44177	Calibrated Age	Cal 40250 - 38890 BC

International Chemical Analysis Inc. 1951 NW 7th Ave STE 300 Miami, FL U.S.A 33136

Sample Report

Submitter Name:Carlos JaramilloCompany Name:Smithsonian Tropical Research InstituteAddress:9100 Panami City PL, Washington DC 20521

International Chemical Analysis Inc.

1951 NW 7th Ave STE 300

Miami, FL U.S.A 33136

QC Report

Submitter Name:Carlos JaramilloCompany Name:Smithsonian Tropical Research InstituteAddress:9100 Panami City PL, Washington DC 20521

Date Submitted October 04, 2		Date Reported	October 31, 2017
QC 1 Sample ID	IAEA C7	QC 2 Sample ID	NIST OXII
QC Expected Value	49.53 +/- 0.50 pMC	QC Expected Value	134.09 +/- 0.70 pMC
QC Measured Value	50.04 +/- 0.20 pMC	QC Measured Value	134.76 +/- 0.40 pMC
Pass?	YES	Pass?	YES

- pMC = Percent Modern Carbon.

- IAEA = International Atomic Energy Agency.

	Seismic	Refraction	Electrical Resistivity		
			Tomography (ERT)		
	Land	Marine	Land	Marine	
Recording	SeismeX16 ¹		GeoAmp ¹ 303 console		
equipment Seismograph			and $ASM001^1$ tomography		
			switch		
Sensor type	10 Hz	10 Hz	land	marine	
	Gs-One ²	Gs-One ²	electrodes	electrode	
	geophones	geophones		cable	
Number of	16	2	32	16	
sensors					
Survey line	120	70	310	160	
length (m)					

Sensor	8	5	10	10		
spacing (m)						
Processing	•Sorting and converting		•Loading of field data in			
workflow	field data from S	SEG-Y to SEG-	ASCII format onto commercial			
	2		Earth Imager	r ³ processing		
	•Filterin	g, denoising and	software			
	gain application	when necessary	 Data denoising and 			
	•Interpre	tation and	smoothing; elim	smoothing; eliminating bad		
	picking of first a	arrivals to	points.			
	identify direct a	nd first refracted	•Iterative	e, least squares-		
	wave for a basic	: twolayer	based robust inv	version		
	model.		•x-y-z coordinate			
	•Inversion of first break		extraction from profiles,			
	picks to generate final layer- and		including LIDAR topography			
	2D velocity- models.		correction			
	•x-y-z coordinate		•Griddin	ig using a		
	extraction from profiles,		'Natural N	Veighbor'		
	including LIDA	R topography	interpolation algorithm			
	correction		•Contouring and final			
	•Griddin	ig using a	mapping			
	'Natural N	leighbor'				
	interpolation alg	gorithm				
	•Contouring and final					
	mapping					
¹ : Commercial equipment by Andes Earth Imaging, Miami, USA ² :						
Commercial s	Commercial sensor by Geospace Technologies, Houston, USA					
³ : Commercial software by Advanced Geosciences Inc, Dallas, USA						

 Table S1. Summary of acquisition instrumentation and processing workflow.

	Land	Marine	Land	Marine
	seismic	seismic	ERT	ERT
	refraction	refraction		
Platanares	10	1	4	0
area				
Paso La	4	0	1	
Torre area				
			1	
			(land to	river)
Intermediate	2	0	1	0
area 1				
Intermediate	4	0	0	0
area 2 (near				
dredging tool)				

Table S2. Summary of field survey lines acquired.

		Weathered Layer (top soil)		Bedrock (fossiliferous conglomerate)		
		Vmin (m/s)	Vmax (m/s)	Vmin (m/s)	Vmax (m/s)	Rho-max (ohm m)
North	Paso La Torre	234	251	477	483	450
	Intermediate Area 2	204	254	384	414	n/a
C and la	Intermediate Area 1	206	250	382	384	260
South	Platanares	197	255	354	399	170

Table S3. Seismic P-wave minima and maxima velocities and maxima electric resistivities found for top layers (in meters per second and ohm-meters respectively). Note south to north gradual increase.

Supplementary Information S1. Palynological comparison

This is the R-code need to perform the cluster and DCA analyses comparing the

muddy sample to the Quilchao-1 core of Berrio et al (2012)

quilchao <- get_download(get_dataset(21915)) # Site Id from Quilchao1 quil
<- quilchao[[1]][[4]] # Extract counts
cron <- as.data.frame(quilchao[[1]][[6]])[,2] # Extract chronology</pre>

load muddy counts
muddy <- read.csv("Supplementary Informatio 3 MuddySample_pollen.csv",check.names = FALSE)</pre>

Merge counts a <- merge(t(quil),t(muddy), by=0, all=TRUE) a[is.na(a)]<-0; rownames(a)<-a[,1]; a <- a[,-1] cauca <- t(a)</pre>

clean taxa (take out aquatics fungi and RW)

```
out <-c("Fungi undiff.", "Gelasinospora", "Hydrocotyle", "Isoetes", "Sagittaria", "Typha", "Cyperaceae undiff.",
"Asteraceae (aff. Ambrosia) RW")
cauca.clean <- cauca[,-match(out, colnames(cauca))]
```

relative abundance
suma <- apply(cauca.clean, 1, sum)
abrel <- (cauca.clean / suma) * 100</pre>

library(vegan)

dca <- decorana(abrel,iweigh=0) sc <scores(dca, display="sites") eucdca <vegdist(sc, method="euclidean")

library(rioja) chclust(eucdca)->c2

```
par(mfrow=c(3,1),mar=c(4, 4, 0, 2))

plot(as.matrix(eucdca)[113,-113], t="n",xaxt="n",yaxt="n",bty="n",xlab="",ylab="")

rect(c(1.1,3,18,66,81,102),rep(1,6),c(3,18,66,81,102,112),rep(1.5,6))

text(c(2,10.5,42,73.5,91.5,107),rep(1.25,6),c("QIO-4b","QIO-4a","QIO-3","QIO-2","QIO-1b","QIO-1a"))

text(56.5,2,"Quilichao - 1 Zones (Berrio et al. 2002)")

plot(c2,hang=-0.1,cex=0.7)

abline(h=18,col="gray",lty=2)
```

plot(as.matrix(eucdca)[113,-113], t="l", main="",xaxt="n",las=1,cex.axis=0.7, xlab=" Quilichao's samples (Age BP)",ylab= "Distance (SD)") axis(side=1,at=1:112,labels=cron, las=2,cex.axis=0.7) dev.off()

Supplementary Information S2¬ Sample,Taxa_ID,Count,in_sum Muddy_ID_44171,Asteraceae (aff. Ambrosia) RW,486,0 Muddy_ID_44171,Cyperaceae,970,0 Muddy_ID_44171,Arecaceae,72,1 Muddy_ID_44171,Moraceae-Urticaceae,57,1 Muddy_ID_44171,Apocynaceae,23,1 Muddy_ID_44171,Amaranthaceae,18,1 Muddy_ID_44171,Celtis,11,1 Muddy_ID_44171,Solanaceae,6,1 Muddy_ID_44171,Asteraceae (Asteroidea),6,1 Muddy ID 44171, Bromeliaceae, 5,1 Muddy ID 44171,Loranthaceae,5,1 Muddy_ID_44171,Onagraceae (aff. Ludwiga),5,1 Muddy_ID_44171,Bignoniaceae,4,1 Muddy_ID_44171,Fabaceae (C),4,1 Muddy_ID_44171,Fabaceae (M),4,1 Muddy_ID_44171,Piper,4,1 Muddy_ID_44171,Poaceae,4,1 Muddy ID 44171, Anacardiaceae, 3,1 Muddy_ID_44171,Apiaceae,3,1 Muddy_ID_44171,Plantago,3,1 Muddy_ID_44171,Sapium,3,1 Muddy_ID_44171,aff. Saurauia,2,1 Muddy_ID_44171,Annonaceae,2,1 Muddy_ID_44171,Louteridium (Acanthaceae),2,1 Muddy_ID_44171, Malpighiaceae, 2,1 Muddy_ID_44171,Myrica,2,1 Muddy_ID_44171,Myriophylum,2,1 Muddy_ID_44171,Petiveria,2,1 Muddy_ID_44171,Asteraceae (Liguliflorae),1,1 Muddy_ID_44171,Combretaceae-Melastomataceae,1,1 Muddy_ID_44171,Euphorbiaceae,1,1 Muddy_ID_44171, Euphorbiaceae (undif), 1, 1 Muddy_ID_44171,Justicia,1,1 Muddy_ID_44171,Randia,1,1

Muddy_ID_44171,Tournefortia,1,1 Muddy_ID_44171,Typha,26,0 Muddy_ID_44171,Sagittaria,14,0 Muddy_ID_44171,IsoÎtes,1,0 Muddy_ID_44171,Espora trilete equinas largas,14,0 Muddy_ID_44171,Polypodyaceae gemada,3,0 Muddy_ID_44171,Lycopodium,2,0 Muddy_ID_44171,Espora monolete equinas cortas,1,0 Muddy_ID_44171, Espora trilete gemada, 1,0 Muddy_ID_44171,Selaginella,1,0 Muddy_ID_44171,Fungi espora (Tilletia),16,0 Intraclast_ID_44168, Polypodiisporites aff. Specious RW, 240,0 Intraclast_ID_44168, Maurittidiites franciscoi var. Minutus RW, 89,0 Intraclast_ID_44168,Arecaceae,13,1 Intraclast_ID_44168, Moraceae-Uricaceae, 5,1 Intraclast_ID_44168,Bignoniaceae,4,1 Intraclast_ID_44168, Apocynaceae, 2,1 Intraclast_ID_44168,Louteridium (Acanthaceae),2,1 Intraclast_ID_44168,Polygonaceae,2,1 Intraclast_ID_44168,Annonaceae,1,1 Intraclast_ID_44168,Asteraceae,1,1 Intraclast_ID_44168,Amaranthaceae,1,1 Intraclast_ID_44168,Euphorbiaceae,1,1 Intraclast_ID_44168,Piper,1,1 Intraclast_ID_44168,Desc tricolpado,1,1 Intraclast_ID_44168,Cyperaceae,51,1 Intraclast_ID_44168,Lycopodium,2,0 Intraclast_ID_44168,Selaginella,11,0