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Abstract

Inflationary models including vector fields have attracted a great deal of attention over the
past decade. Such an interest owes to the fact that they might contribute to, or even be fully
responsible for, the curvature perturbation imprinted in the cosmic microwave background.
However, the necessary breaking of the vector fields conformal invariance during inflation
is not without problems. In recent years, it has been realized that a number of instabilities
endangering the consistency of the theory arise when the conformal invariance is broken by
means of a non-minimal coupling to gravity. In this paper, we consider a massive vector
field non-minimally coupled to gravity through the Gauss-Bonnet invariant, and investigate
whether the vector can play the role of a curvaton while evading the emergence of instabil-
ities and preserves the large-scale isotropy.

Keywords: inflation; statistical anisotropy; vector field models; Gauss-Bonnet invariant.

Resumen

Los modelos inflacionarios que incluyen campos vectoriales han despertado una gran interés
durante la última década. Este interés se debe al hecho de que estos campos podrı́an con-
tribuir, o incluso ser totalmente responsables, de la perturbación en la curvatura impresa en
la radiación cósmica de fondo. Sin embargo, la necesaria ruptura de la invariancia conforme
del campo vectorial durante inflación no está exenta de problemas. En los últimos años se
ha mostrado que surgen una serie de inestabilidades que ponen en peligro la coherencia de
la teorı́a cuando la invariancia conforme se rompe mediante un acoplamiento no mı́nimo a
la gravedad. En este artı́culo, consideramos un campo vectorial masivo, no mı́nimamente
acoplado a la gravedad a través de la invariante Gauss-Bonnet, e investigamos si el campo
vectorial puede desempeñar el rol de curvatón al tiempo que evade la aparición de inesta-
bilidades y preserva la isotropı́a a gran escala.

Palabras clave: inflación; anisotropı́a estadı́stica; modelos con campos vectoriales; invari-
ante de Gauss-Bonnet.
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Introduction

Thanks to a wealth of high precision cosmological observations, specially those obtained
by the WMAP (C. L. Bennett et al., 2013; Hinshaw et al., 2013; Komatsu et al., 2011;
Spergel et al., 2007.; Peiris et al., 2003) and Planck missions (Aghanim et al., 2020;
Akrami et al., 2020c, 2020a), cosmological inflation is widely recognized as the simplest
paradigm to generate the observed adiabatic, nearly scale-invariant, gaussian spectrum of
superhorizon fluctuations imprinted in the cosmic microwave background (CMB). In par-
ticular, single-field models, in which the inflationary expansion is driven by a scalar field
minimally coupled to gravity, are clearly favored by data. Despite their excellent agreement
with the available data, indications exist suggesting that single-field models might need to
be extended. The most notorious among these indications are the possible presence of the
so-called CMB anomalies (see for instance (Perivolaropoulos, 2014) for an overview of
some of them), firstly reported by WMAP (C. Bennett et al., 2011) and later by Planck
(Akrami et al., 2020b). However, since the statistical significance of these effects is small,
the existence of these anomalies has been debated in the literature and they are yet to be
confirmed (Akrami et al., 2020b; Schwarz, Copi, Huterer, & Starkman, 2016).

Although scalar fields have played a dominant role in inflationary cosmology, over the last
decade it has been realized that vector fields may also have an important function provided
their conformal symmetry is broken (see for instance (Soda, 2012; Dimastrogiovanni, Bar-
tolo, Matarrese, & Riotto, 2010; Maleknejad, Sheikh-Jabbari, & Soda, 2013; De Felice
et al., 2016; Heisenberg, Kase, & Tsujikawa, 2016, 2018; Heisenberg, 2019) and refer-
ences therein). This breaking, which can be brought about by the introduction of a mass
term, for example, allows the vector field to obtain a superhorizon spectrum of perturba-
tions during inflation. In turn, this opens up the possibility that the vector field becomes a
curvaton and contributes to the curvature perturbation (Lyth & Wands, 2002; Dimopou-
los, 2006; Dimopoulos & Karciauskas, 2008; Dimopoulos, Karciauskas, Lyth, & Ro-
driguez, 2009; Dimopoulos, Karciauskas, & Wagstaff, 2010.b, 2010.a; Dimopoulos,
2012; Navarro & Rodriguez, 2013.; Karciauskas & Lyth, 2010; Wagstaff & Dimopou-
los, 2011), for which the vector field must come to dominate (or nearly dominate) the energy
density at a later epoch. However, the risk when considering the influence of vector fields in
the cosmological dynamics is that, since they signal a preferred direction in space, they may
result in an anisotropic expansion in excess of the current observational bounds. To quan-
tify the level of statistical anisotropy, it is usual to parametrize the spectrum of the curvature
perturbation as (Ackerman, Carroll, & Wise, 2007)

Pζ (k) = P iso
ζ (k)[1+g(k)(d · k̂)2] , (1)

where P iso
ζ (k) denotes the isotropic part of the power spectrum, g(k) is the so-called

anisotropy parameter, which quantifies the statistical anisotropy in the spectrum Pζ , d
is the unit vector signaling the preferred direction, and k̂ ≡ k/k is the unit vector along
the wavevector k with modulus k. We distinguish between background anisotropy from
statistical anisotropy, given that the latter is perturbative in origin. Observations from the
Planck satellite suggests that g can be at most 0.97 (Ade et al., 2016), which represents
a very tight constraint on the contribution of vector fields to the power spectrum of the
CMB. Nevertheless, if the isotropy of the expansion is approximately preserved, vector
fields could even be responsible for inflation (Golovnev, Mukhanov, & Vanchurin, 2008.;
Golovnev & Vanchurin, 2009; Golovnev, 2010, 2011; Emami, Mukohyama, Namba,
& Zhang, 2017). The requirement in this case is to have either a large number (typically
in the hundredths) of randomly oriented vector fields so that they collectively generate a
nearly isotropic expansion, or consider three mutually orthogonal vector fields with equal
vev (Golovnev et al., 2008.). It is also possible to retain an isotropic inflationary expan-
sion by considering the dynamics of gauge vector fields. This is the case of gaugeflation
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(Maleknejad et al., 2013; Maleknejad & Sheikh-Jabbari, 2011, 2013; Nieto & Ro-
driguez, 2016; Rodrı́guez & Navarro, 2018; Adshead & Sfakianakis, 2017), in which a
nonabelian gauge field minimally coupled to gravity plays the role of the inflaton. In this
proposal, an SU(2) gauge field is considered to form a triad of mutually orthogonal vectors,
which in turn allows the gauge field to drive inflation without giving rise to an anisotropic
expansion.

An interesting manner to break the conformal invariance is by considering a non-minimally
coupled vector field, thus resulting in a modification of gravity (Dimopoulos & Karci-
auskas, 2008; Golovnev et al., 2008.; Golovnev & Vanchurin, 2009; Golovnev, 2010).
Unfortunately, the non-minimal coupling to gravity is known to be problematic due to the
emergence of instabilities (Himmetoglu, Contaldi, & Peloso, 2009b, 2009c, 2009a). Al-
though the existence of these problems represents a serious drawback for the consistency
of the theory, the very nature of the instabilities has been called into question, and a num-
ber of scenarios have been envisaged to evade them (Karciauskas & Lyth, 2010). In this
paper, we examine a cosmological vector field non-minimally coupled to gravity through
the Gauss-Bonnet invariant. Although couplings between the Gauss-Bonnet invariant and
scalar fields have been explored in the context of inflationary cosmology (Tsujikawa, Sami,
& Maartens, 2004; Carter & Neupane, 2006.; Satoh & Soda, 2008; Guo & Schwarz,
2009; Sadeghi, Setare, & Banijamali, 2009; Guo & Schwarz, 2010; Satoh, 2010; Jiang,
Hu, & Guo, 2013; Nozari & Rashidi, 2013; Koh, Lee, Lee, & Tumurtushaa, 2014;
Okada & Okada, 2016; Kanti, Gannouji, & Dadhich, 2015; van de Bruck & Longden,
2016; van de Bruck, Dimopoulos, & Longden, 2016; Koh, Lee, & Tumurtushaa, 2017;
Mathew & Shankaranarayanan, 2016; van de Bruck, Dimopoulos, Longden, & Owen,
2017; Fomin & Chervon, 2017; Yi, Gong, & Sabir, 2018; Granda & Jimenez, 2019b,
2019a; Jimenez, Granda, & Elizalde, 2019; Kleidis & Oikonomou, 2019; Fomin, 2020;
Pozdeeva, 2020; Rashidi & Nozari, 2020), the coupling with a massive vector field has not
been sufficiently explored in the literature (Oliveros, 2017). Non-minimal couplings of the
electromagnetic field to gravity, in particular to the Gauss-Bonnet invariant, have been con-
sidered as a mechanism to generate large-scale magnetic fields during inflation (Sadeghi et
al., 2009; Bamba & Odintsov, 2008). Arguably, this is due to the very presence of instabili-
ties in relatively simple settings, as in the case of a non-minimal coupling to the Ricci scalar,
which then invites to exercise caution when considering more complicated non-minimal
couplings. Nevertheless, the reason for us to invoke such a coupling owes to the peculiar
behavior of the Gauss-Bonnet invariant. Indeed, a very crucial feature is that it changes its
sign when passing from inflation to a matter or radiation dominated phase. Consequently, a
mass term for the vector field, coming from this coupling, features the same change of sign
towards the end of inflation. In the vector curvaton scenario (Dimopoulos, 2006), a nega-
tive mass-squared is required for the vector field to generate a nearly flat power spectrum,
while a positive mass-squared is required for the vector field engages into quick oscillations
after inflation, in order to avoid the generation of large background anisotropies if the vector
field dominates the Universe. However, a clear mechanism producing this change of sign is
not provided, and thus it has to be assumed (Dimopoulos, 2006). In this regard, the goal
of this paper is to investigate whether a vector field coupled to this topological term can
contribute significantly to the total energy density after inflation, thus being able to play
the role of a curvaton. Two key assumptions are made in order to keep the isotropy in the
expansion: i) the vector field is subdominant during inflation (Dimopoulos, 2006) and ii)
after inflation the vector field conduct itself as a pressureless mater (Dimopoulos, 2006).
These assumptions allow us to safely use an isotropic and homogeneous spacetime, i.e. the
Friedman-Lemaı̂tre-Robertson-Walker (FLRW) metric.

The paper is organized as follows. In Sec. , we clarify our position with respect to the
instability of the theory. The Lagrangian density for a vector field coupled to the Gauss-
Bonnet invariant is introduced in Sec. . In Sec. , we compute the perturbation spectrum
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and the anisotropy parameter g. Section is devoted to study the dynamics of the vector
field during and after inflation. In Sec. , we study the evolution of the energy density and
show that the condensate of an oscillating heavy vector field behaves like a pressureless
fluid. It means that the vector does not generate large background anisotropies, fulfilling
the requirements to be a suitable curvaton field. Finally, we present our conclusions in Sec.
.

On the instability of non-minimally coupled vector fields

An issue of fundamental importance concerning theories of massive vector fields non-
minimally coupled to gravity is their instability (Karciauskas & Lyth, 2010; Himmetoglu
et al., 2009b, 2009c, 2009a), which originates from the longitudinal mode of the vector
field. One of the known instabilities is perturbative in origin and arises when the effective
mass squared of the vector field changes its sign from negative to positive (Himmetoglu
et al., 2009b, 2009c, 2009a). In the scenario studied in Refs. (Dimopoulos et al., 2009;
Karciauskas & Lyth, 2010), it was shown in Ref. (Dimopoulos et al., 2009) that the insta-
bility is under control during inflation. However, the instability arises at some later epoch,
when the field’s effective mass squared crosses zero. In spite of this difficulty, the authors
in (Karciauskas & Lyth, 2010) go on to argue that even if such instability exists, it still
might be possible to avoid it if the bare mass of the vector field stems from the coupling
to another field, which then would allow either a curvaton or an inhomogeneous reheating
mechanism. To the best of our knowledge, the debate on this issue is not yet settled, and
hence our attitude towards it will be the same as in Ref. (Karciauskas & Lyth, 2010), thus
simply ignoring the instability or assuming that, if present, it can be circumvented by some
mechanism. Although this attitude conveniently dispenses with the problem, it is also fair to
say that such instability arises when the longitudinal mode becomes unphysical, and hence
it is reasonable to suspect that the associated singularity might share the same unphysical
nature.

Apart from the above, yet another problem plagues this kind of vector field models, the
so-called ghost instability. It originates because, during inflation, the kinetic energy density
for the longitudinal modes of the vector field have the wrong sign, which might entail the
copious production of vector field quanta up to the point of ruining inflation. Regarding this
instability, the authors in Ref. (Karciauskas & Lyth, 2010) argue that as long as the nega-
tive energy contributed by ghost states does not exceed the energy density driving inflation,
these are in principle not problematic for the stability of the theory. In the following, we
implicitly assume that this is indeed the case.

Vector field coupled to the Gauss-Bonnet invariant

We consider a massive vector field coupled to the Gauss-Bonnet invariant and evolving in an
inflationary background, which we take to be quasi-de Sitter and driven by an unspecified
matter source. The action of the system is

L ≡ LEH +Linf +LA +LG , (2)

with

LEH ≡−m2
P

2
R , LA ≡−1

4
Fµν Fµν +

1
2

m̃2 Aµ Aµ ,

LG ≡ 1
2

α G Aµ Aµ , (3)

where, mP is the reduced Planck mass, R is the Ricci scalar, Fµν ≡ ∇µ Aν −∇ν Aµ is the
strength tensor associated to the vector field Aµ with bare mass m̃, G ≡ R2 − 4Rαβ Rαβ +

4
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Rαβγδ Rαβγδ is the Gauss-Bonnet topological invariant with coupling strength α whose di-
mensions are [α] = m−2

P , and Rµν , Rµνρσ are the Ricci tensor and the Riemann tensor,
respectively. Linf is the Lagrangian density for the energy content responsible for the infla-
tionary period. The effective mass squared of the vector field is defined as

m2 ≡ m̃2 +α G . (4)

Greek indices run from 0 to 3 and denote spacetime coordinates. Latin indices run from 1
to 3 and denote spatial components. In the case of the FLRW metric ds2 = dt2 −a2(t)dx2,
where a(t) is the scale factor and x are the Cartesian spatial coordinates, the Gauss-Bonnet
invariant reads

G = 24H2(Ḣ +H2) , (5)

where H = ȧ/a is the Hubble parameter, and the overdot denotes a derivative with respect
to the cosmic time t.

Perturbation spectrum

Having clarified our position with respect to the instability of the theory, we investigate the
conditions for which the vector field obtains a nearly scale-invariant spectrum of superhori-
zon perturbations. The equation of motion for the vector field, which is obtained by varying
the action of the Lagrangian in Eq. (2) with respect to Aν , is

∇µ Fµν +m2Aν = 0 . (6)

Assuming that inflation homogenizes the vector field; i.e. ∂iAµ = 0, it is easy to show
that its temporal component, At , must be zero, while the spatial components Ai obey (See
Appendix for the details of the calculations.)

Äi +HȦi +m2Ai = 0 . (7)

Now, we perturb the vector field in the following way:

Ai(t,x)≡ Ai(t)+δAi(t,x) , At(t,x) = δAt(t,x) , (8)

and write the equations of motion for transverse (δA i
⊥) and longitudinal (δA i

‖) modes as
follows (see Appendix ),

[
∂ 2

t +H∂t +m2 +

(
k
a

)2
]

δA i
⊥ = 0 , (9)

[
∂ 2

t +

(
1+

2k2

k2 +(am)2

)
H∂t +m2 +

(
k
a

)2
]

δA i
‖ = 0 , (10)

where δA i are the Fourier modes of δAi. In the above equations, we used the fact that m2

is a constant during inflation since Ḣ � 0 and therefore G ≈ 24H4.

In order to quantize the field, we introduce creation/annihilation â†/â operators for each
polarization mode

δA j(t,x) ≡
∫ d3k

(2π)3 ∑
λ

[
e j

λ (k̂)âλ (k)zλ (t,k)e
−ik·x

+e j∗
λ (k̂)â

†
λ (k)z

∗
λ (t,k)e

ik·x
]
, (11)

5
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where λ = L,R labels the left and right transverse polarizations and λ = || the longitudinal
polarization. Choosing the k-direction along the z-axis, the polarization vectors eλ can be
written as

eL =
1√
2
(1, i,0) , eR =

1√
2
(1,−i,0) , e|| = (0,0,1) , (12)

while the commutation rules are
[
âλ (k) , â†

λ ′(k′)
]
= (2π)3δ (k− k′)δλλ ′ . (13)

With all the above, the power spectrum for the λ -polarized modes zλ is defined by

Pz
λ (k) = lim

k/aH→0

k3||zλ ||2

2π2 . (14)

In the following subsections we study each polarization individually.

Transverse modes

Defining the physical transverse modes as b L, R ≡ z L, R/a and using the conformal time
dη ≡ dt/a, the evolution equation (9) is rewritten as

[
∂ 2

η +2H ∂η +2H 2 +(am)2 + k2]b L, R = 0 , (15)

with H ≡ aH being the Hubble parameter in conformal time. This equation can be recast
in the form of a Bessel equation whose solution is given in terms of the Hankel functions
Hν as

b L, R(η ,k) =Ck a−1 √−η Hν(−kη) , (16)

where

ν2 ≡ 1
4
− m̃2 +αG

H2 =
1
4
− m2

H2 . (17)

The constant Ck can be found by matching Eq. (16) with the Bunch-Davies vacuum at early
times (when −kη → ∞), obtaining

Ck =

√
π

2
⇒ b L, R(η ,k)≈ 1

a
√

2k
e−ikη . (18)

As expected, the modes behave as those for an oscillator. Now, we are interested in the
late time behaviour (when −kη → 0) of the physical modes. In this regime, the dominant
contribution of the solution in Eq. (16) is

b L ,R(k) ∝ k−ν . (19)

Replacing the later expression in the power spectrum defined in Eq. (14), we obtain

P L, R ≡
Pz

L, R

a2 ∝ k3−2ν , (20)

which corresponds to the scale dependance of the power spectrum of the physical vector
field perturbations. The spectral index is written as

n L, R −1 ≡ d lnP L, R

d lnk
= 3−2ν . (21)

From Eqs. (17) and (21) it is clear that the physical vector field can attain a nearly flat
power spectrum if and only if m2 ≈ −2H2. Consequently, the coupling α must satisfy
m̃2 +24αH4 ≈−2H2. Moreover, if m̃ � H, the condition for scale-invariance becomes

αH2 ≈− 1
12

. (22)
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This result must be compared to the one in Refs. (Dimopoulos & Karciauskas, 2008;
Himmetoglu et al., 2009a) where, instead of coupling the vector field to the Gauss-Bonnet
invariant, the authors couple the vector field to the Ricci scalar, i.e. αRAµ Aµ . In Refs.
(Dimopoulos & Karciauskas, 2008; Himmetoglu et al., 2009a), it was shown that if the
coupling constant is exactly 1/6 the power spectrum is perfectly flat, besides, the spectrum
of each transverse mode is precisely the same as that for a scalar field. Finally, it is important
to mention that the requirement m2 ≈ −2H2 is precisely one of the possibilities discussed
in (Karciauskas & Lyth, 2010) to avoid the instabilities mentioned in Sec. .

Longitudinal modes

Equation (10) gives the evolution for the longitudinal modes z‖, which, in terms of the
conformal time, can be written as

[
∂ 2

η +
2H k2

k2 +(am)2 ∂η +(am)2 + k2
]

z‖ = 0 . (23)

Using the conditions m̃= 0 and m2 =−2H2 for a scale-invariant transverse power spectrum,
and taking into account that the vacuum boundary condition is modified by

lim
−kη→∞

z‖ = γ
1√
2k

e−ikη , (24)

with γ =
√

(k/am)2 +1 the Lorentz boost factor which takes us from the frame with k = 0
to the frame of momentum k � 0, the solution of the above equation is (Dimopoulos et al.,
2009, 2010.b, 2010.a; Dimopoulos, 2012)

z‖ =
√
−η
2

[
−kη +

2
kη

+2i
]

e−ikη
√
−kη

, (25)

which at late times (−kη → 0) behaves as
√
−η(−kη)−3/2. Replacing the latter in the

power spectrum in Eq. (14) we get

Pz
‖ ≈ 2a2

(
H
2π

)2

, (26)

where we used the approximation H2 ≈ (aη)−2 which is valid during inflation for a quasi-
de Sitter background. As in the transverse case, the physical longitudinal power spectrum
P‖ can be obtained by defining the physical longitudinal modes as b‖ ≡ z‖/a.

Statistical anisotropy

It is known that vector fields introduce inherently a preferred direction and therefore they
can introduce large statistical anisotropies in the perturbation spectrum. If this is the case,
the model will be ruled out because it is in disagreement with the observational results.
For this reason, by using the δN formalism (Starobinsky, 1985; Sasaki & Stewart, 1996;
Lyth, Malik, & Sasaki, 2005; Lyth & Rodriguez, 2005.), in this section we compute
the amount of statistical anisotropy in the spectrum, which is quantified in the parameter g
defined in Eq. (1). We will show that g can be small enough to satisfy the observational
bounds (Ade et al., 2016).

According to the δN formalism, the curvature perturbation ζ is the difference of the number
of e-folds N between uniform density and spatially flat slices of spacetime: ζ ≡ δN. We
will assume that N is function of the scalar field φ and the vector field: N = N (φ ,Aµ).

7
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Then, the curvature perturbation can be written as (Dimopoulos, 2012)

ζ = Nφ δφ +Ni
AδAi +

1
2

Nφφ (δφ)2

+
1
2

Ni
φAδφδAi +

1
2

Ni j
AAδAiδA j +· · · , (27)

where Nφ ≡ ∂N
∂φ , Ni

A ≡ ∂N
∂Ai

, Nφφ ≡ ∂ 2N
∂φ2 , Ni

φA ≡ ∂ 2N
∂φAi

, Ni j
AA ≡ ∂ 2N

∂AiA j
, δφ and δAi are the per-

turbations of the scalar and vector field, respectively. From this result, the power spectrum
of the curvature perturbation reads

Pζ (k) = N2
φ Pφ +N2

A
[
P++

(
P‖ −P+

)
(d̂ · k)2] , (28)

where Pφ denotes the power spectrum of the scalar field, we have defined the even and odd
polarizations for the transverse spectra as 2P± ≡ PL ±PR, respectively. We have taken
into account that our theory is parity conserving, i.e. PR = PL, and thus P+ = PR and
P− = 0. In the latter equation, we have also defined N2

A ≡ ||NA||2 ≡ Ni
ANAi and d̂ ≡ NA/NA,

which defines the preferred direction signaled by the vector field. By comparing the above
equation with Eq. (1), we identify the isotropic part of the spectrum as

P iso
k (k) = N2

φ Pφ (k)+N2
AP+(k), (29)

and hence the anisotropy parameter g can be written as

g = β
P‖ −P+

Pφ +βP+
, β ≡

N2
A

N2
φ
, (30)

where β quantifies the relative contribution of the vector field over the scalar field to the
modulation of N. Now, since the power spectra of the transverse solutions are nearly flat,
they are given by P L, R ≈ (H/2π)2, and assuming that the potential of the scalar field
is sufficiently flat during inflation, such that the power spectrum of the scalar field is also
nearly flat at horizon exit (Lyth & Wands, 2002), i.e. Pφ ≈ (H/2π)2, we get

g ≈ β
1+β

≈ β , (31)

where we took into account that N is primarily modulated by the scalar field, since the
vector field is subdominant during inflation, implying β � 1, then g ≈ β � 1. This result
agrees with the bounds given by Planck which suggest that g can be at most 0.97 (Ade et
al., 2016).

Evolution of the vector field

In this section, we follow the evolution of the homogeneous vector field during and after
inflation in order to determine if the vector field is able to play the role of a curvaton (Lyth
& Wands, 2002; Dimopoulos, 2006).

Defining the physical components of the vector Ai as Bi ≡Ai/a and supposing, by simplicity,
that Bµ = (0,0,0,B), the equation of motion (7) is rewritten as

B̈+3HḂ+
(
Ḣ +2H2 +m2)B = 0 . (32)

In the following, we solve this equation during and after inflation.

8
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Evolution during inflation

As shown in section , the nearly scale-invariant spectrum of vector perturbations is obtained
if the effective mass of the vector field is m2 ≈−2H2, which remains constant during infla-
tion because H � constant. Therefore, the solution of Eq. (32) during inflation is

B(t) = B0 +B1a−3 , (33)

where B0 and B1 are integration constants. The decaying mode in the solution in Eq. (33) is
quickly diluted by inflation, thus the field is nearly constant given that B ≈ B0. This means
that the vector field remains frozen and therefore it is not “erased” in the inflationary phase.

Evolution after inflation

The post-inflationary evolution of the vector field is also described by Eq. (32), but now H
is time depending. Assuming that H evolves as

H(t) =
2 t−1

3(1+w)
, (34)

where w is the equation of state parameter of the dominant fluid after inflation and that
αH2 = γ , where γ is a constant (not necessarily the same required for a flat power spectrum),
Eq. (32) can be recast in the following form

t2B̈+
2 t

1+w
Ḃ+

[
(m̃t)2 − τ2]B = 0 , (35)

where

τ2 ≡ 2(1+3w)
3(1+w)2

(
8γ − 1−3w

3(1+3w)

)
. (36)

We assume this condition for simplicity, and having in mind the condition in Eq. (22) which
is valid during inflation. The general solution of the above equation is

B(t) = tu [c1Jv(m̃t)+ c2Yv(m̃t)] , (37)

where

u ≡ w−1
2(w+1)

, v ≡
√

1+3w
6(1+w)

√
1+3w+192γ , (38)

c1 and c2 being constants of integration and Jv and Yv being the Bessel functions of first
and second kind, respectively. This solution should be contrasted with the solution for the
equation of motion of a vector field non-minimally coupled to the Ricci scalar. In Ref.
(Dimopoulos & Karciauskas, 2008), it was shown that, since this coupling is negligible
after inflation if a radiation dominated period follows after the inflationary phase, since
R ≈ 0 for an equation of state w ≈ 1/3, the vector field behaves as a massive minimally-
coupled abelian vector. In contrast, in our model, the Gauss-Bonnet coupling contributes to
the effective mass after inflation as well. This dependence is very important because, since
the Gauss-Bonnet invariant changes its sign when passing from inflation to a matter or ra-
diation dominated phase, naturally entails the change of sign of the vector mass. In Refs.
(Dimopoulos, 2006; Dimopoulos & Karciauskas, 2008; Dimopoulos et al., 2010.b), it
was shown that a vector field with positive mass after inflation can engage into quick oscil-
lations, avoiding the generation of large-scale anisotropies. However, this sign change has
to be assumed since a mechanism provoking this feature is not presented.

Now, we consider two possible approximations of the solution (37) regarding the depen-
dence of the Bessel functions with respect to the bare mass m̃ of the vector field. Firstly, we

9
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assume that the vector field is “light”, i.e. m̃t → 0. Hence the solution (37) is approximated
by

B(t)≈ c̃1a3(1+w)(u+v)/2 + c̃2a3(1+w)(u−v)/2 , (39)

where c̃1 and c̃2 are constants. The latter solution means that the evolution of the light vector
field is described by a power law for the scale factor. On the other hand, for a “heavy” vector
field we take the limit of Eq. (37) when m̃t → ∞ obtaining

B(t)≈ a−3/2 [b1 cos(m̃t −ϕ)+b2 sin(m̃t −ϕ)] , (40)

where b1 and b2 are constants. This solution shows that a heavy vector field oscillates with
phase ϕ (which is a function of v) and envelope decreasing as

B(t) ∝ a−3/2 . (41)

This shows that the vector field performs rapid oscillations, hence its dynamical behavior is
effectively characterized by the envelope.

Evolution of the energy density

In the last section, we showed that the vector field has a constant magnitude during inflation.
After inflation, it follows either a power law or an oscillatory motion depending whether it
is light or heavy, respectively. However, if the vector field is to have a chance to imprint
its perturbation spectrum at late times, it must nearly dominate the universe after inflation,
according to the curvaton scenario (Lyth & Wands, 2002). Therefore, it is necessary to
follow the evolution of its energy density.

Varying the corresponding action for the Lagrangian in Eq. (2) with respect to the metric
gµν , it follows that (Carter & Neupane, 2006.; Nojiri, Odintsov, & Sasaki, 2005):

δLEH

δgµν
+

δLinf

δgµν
+

δLA

δgµν
+

δLG

δgµν
= 0 , (42)

where

δLEH

δgµν
=− m2

P
2

(
−Rµν +

1
2

gµν R
)
, (43)

δLA

δgµν
=−1

8
gµν Fαβ Fαβ +

1
2

Fµρ Fν
ρ

− 1
2

m̃2
(

Aµ Aν − 1
2

gµν Aσ Aσ

)
, (44)

δLG

δgµν
=−1

2
α G Aµ Aν +

1
2

gµν f G −2 f RRµν

+2∇µ ∇ν( f R)−2gµν�( f R)+8 f Rµ
ρ Rνρ

−4∇ρ ∇µ( f Rνρ)−4∇ρ ∇ν( f Rµρ)+4�( f Rµν)

+4gµν ∇ρ ∇σ ( f Rρσ )−2 f Rµρστ Rν
ρστ

+4∇ρ ∇σ ( f Rµρσν) , (45)

and f ≡ 1
2 αAµ Aµ . Using the FLRW metric, the “00” component of Eq. (42) can be written

as 3m2
P H2 = ρinf +ρB, where ρinf is the energy density of the source driving inflation and

ρB =
1
2

Ḃ2 +
1
2

[
m̃2 +H2

(
1+2

Ḃ
BH

)]
B2

+24αH4B2
(

Ḃ
HB

+
α̇

2αH

)
, (46)
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is the energy density of the physical vector field Bµ = (0,0,0,B). This is to be compared
with the energy density ρB = 1

2 Ḃ2 + 1
2 m̃2B2 of a vector field non-minimally coupled to

gravity through the Ricci scalar (Dimopoulos & Karciauskas, 2008; Karciauskas & Lyth,
2010; Golovnev et al., 2008.; Golovnev & Vanchurin, 2009; Golovnev, 2010). In our
case, the energy density of the vector field has an extra term coming from the coupling with
the Gauss-Bonnet invariant.

During inflation, Eq. (46) gives

ρB � 1
2

H2B2 � const. , (47)

where we used the fact that m̃ � H and B, H and α are nearly constants. We can see that the
energy density of the vector field is not diluted by inflation since it remains almost constant.

In order to avoid anisotropic expansion after inflation, the contribution to the energy tensor
coming from the vector field must not introduce anisotropic pressures. This can be achieved
if the vector field condensate behaves as a pressureless matter, i.e. ρB ∝ a−3 (Dimopoulos,
2006). In this section we investigate the available parameter space for the constant γ that
allows this behavior in a radiation dominated universe characterized by w ≈ 1/3. Before to
continue our discussion, we want to point out the following. During inflation, the Gauss-
Bonnet term is positive and it can be approximated by G ≈ 24H4. On the other hand, in
order to get a nearly flat power spectrum for the transverse modes we have αH2 ≈−1/12,
and therefore α < 0. After inflation, when the Hubble parameter H(t) is given by Eq. (34),
the Gauss-Bonnet invariant is given by

G =−64
27

1+3w
t4(1+w)

. (48)

So, the Gauss-Bonnet invariant is negative if w > −1/3 (eg. a matter (w = 0) or a radia-
tion (w = 1/3) fluid). This implies γ < 0 and a change in the sign of the effective mass,
m2 = m̃2 +αG , from negative, during inflation, to positive, after inflation. As explained
in (Dimopoulos, 2006), a minimally-coupled vector plays the role of a curvaton if it has a
negative mass-squared (explicitly m2 ≈ −2H2) during inflation. After inflation, the mass-
squared has to become positive so that the vector field engages into oscillations and thus
avoiding the production of large background anisotropy. As we show, in our model, this
change of sign is tacitly provided by the “evolution” of the Gauss-Bonnet invariant.

Regarding a light field, we showed in Sec. that the dynamics of the vector field is described
as a power law in the scale factor (see Eq. (39)). The power is given in terms of the equation
of state parameter w and the constant γ . Then, replacing Eqs. (34) and (39) in Eq. (46),
and considering that the dominant fluid after inflation can be either a stiff fluid (w = 1) or
a radiation fluid (w = 1/3), one can realize that is impossible to satisfy the condition that
γ < 0 and the condition that the density of the vector field scales as pressureless matter, so
we discard the light field solution.

For a heavy field, we showed that it is oscillating with decreasing envelope as a−3/2. Fol-
lowing Ref. (Dimopoulos, 2006), the period of oscillations is much smaller than the Hubble
time, which means that the effective behaviour of the vector field is given by its envelope.
Therefore, replacing Eq. (41) in the density in Eq. (46) we get the average density over
many oscillations as

ρB = B2
0

(
1
32

+3γ
)

a−7 +
1
2

m̃2B2
0a−3 , (49)

where B0 is the constant of proportionality implicit in Eq. (41). The first term in Eq.
(49) goes as a−7, so it decays faster than the radiation dominant fluid (which decays as
a−4) and even faster than the second term. This means that ρB ∝ a−3. The fact that the
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average energy density decays as a−3 implies two important things: i) the vector field may
eventually dominate the Universe and imprint its perturbation spectrum, and ii) the average
energy density of the vector field scales as pressureless matter, so the average pressure is
zero and therefore there is no generation of large background anisotropy.

Conclusions

In this paper, we have examined the evolution of a cosmological vector field coupled to
the Gauss-Bonnet invariant. Assuming that m̃ � H, we found that, in order to get a nearly
flat power spectrum for the transverse modes during inflation, the coupling α must satisfy
the condition αH2 ≈ −1/12. This implies that the power spectrum for the longitudinal
modes is P‖ = 2P L, R. Consequently, we showed that the amount of statistical anisotropy
in our model, quantified by the parameter g, is within the observational bounds, given that
the vector field is subdominant during inflation. We also found that the vector field re-
mains constant during the inflationary phase, but it performs rapid oscillations after that
whenever m̃ � H. Averaging over many oscillations, the vector field effectively decays as
a−3/2, which means that the average energy density, ρB, decays as a−3, so, after inflation,
the vector field behaves like a pressureless fluid. This indicates that the vector field has a
chance to nearly dominate the universe after inflation, without introducing large background
anisotropy, and thus be able to imprint its curvature perturbation.

According to the vector curvaton scenario, the mass of the vector must be negative during
inflation and positive after that. In our model, this feature is provided by the particular
behavior of the Gauss-Bonnet invariant because it changes its sign when passing from infla-
tion to a matter or radiation dominated epoch. Therefore, we conclude that this non-minimal
coupling between a vector field and the Gauss-Bonnet invariant can be a reliable and realis-
tic vector curvaton model.
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