
Equations of motion for the transverse and longitudinal modes
In this appendix we outline some details of the steps required to compute the power spec-
trum of the transverse and longitudinal modes. We start with the background equations of
motion.

Taking n = 0 in Eq. (6), we get
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and taking n = i
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Contracting Eq. (6) with ∂µ , we obtain an integrability condition which reads
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Combining the above equation with Eq. (50), and replacing in Eq. (51), we obtain
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Since inflation homogenizes the vector field, ∂iAµ = 0, hence Eq. (50) implies At = 0, while
the spatial components obey Eq. (7).

Now, we perturb around the homogeneous components as in Eq. (8). At first order, the
perturbations dAµ obey the same equations of motion given in Eq. (50) and (53) since they
are linear. Let us switch to Fourier space by expanding the perturbations as
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Inserting this in Eq. (50) we get the following constraint
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which allows us to write dAt in terms of dAi. Using this in Eq. (53) we get
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The last step consists in defining the longitudinal and transverse components as
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and replacing in the latter equation, we get Eqs. (9) and (10).


