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Resumen

En este documento se presenta una formulacién de potencial vectorial asociado al campo
eléctrico para estudiar electrodos de superficie embebidos en un plano. Se muestra que el
problema se puede abordar mediante la solucién de la ecuacién de Laplace en el espacio
libre, bajo condiciones de frontera de Neumann sobre las placas cuando la separacion entre
ellas tiende a cero. Se obtiene que campo eléctrico matemdticamente guarda una analogia
con la ley de Biot-Savart de magnetostdtica. La estrategia permite generalizar dicho resul-
tado analitico para su aplicacidon en la descripcién de electrodos de superficie con separacion
entre las placas.

Palabras clave: Ley de Biot-Savart; potencial vector eléctrico; electrodo de superficie con
y sin separacion entre placas.

Abstract

A vector potential formulation is shown in this article to compute the electric field of planar
surface electrodes. The electric field is derived from from the solution of the Laplace’s
equation in the free-charge space. Neumann-boundary conditions must be set on the region
between planar metallic sheets as the separation goes to zero. It is shown that the electric
field can be written via a Biot-Savart-like integral. The strategy enables to generalize the
analytical result for its application in the gaped surface electrodes description.

Keywords: Biot-Savart law; electric vector potential; gapless and gaped surface-electrode.

Introduction

In this document, we study a system composed of two metal sheets with a gap G in between
(see Fig.1-left). The sheets lie on the xy-plane, and a constant potential difference is en-
forced in-between. For convenience, the potentials of the inner and outer sheets are V,, and
zero, respectively. This system is commonly referred to as gaped Surface Electrode (SE)
(House, 2008; Salazar et al., 2019, 2022; Schmied, 2010) and it plays an important role to
model the static electric fields in SE ion traps where ion-trap networks including arrays of
SE are also promising candidates in quantum processing (Chiaverini ez al., 2005; Seidelin
et al., 2006; Daniilidis ez al., 2011; Kim et al., 2011; Hong et al., 2017; Mokhberi et al.,
2017; Tao et al., 2018; Van Mourik et al., 2020)
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The surface electrode also has practical relevance in antenna theory. For instance, when
considering a time-varying voltage between the sheets. If the system is fed with a har-
monic voltage source V (¢) =V, exp (iowr) of angular frequency @, then the SE will radiate
electromagnetic waves that will mostly depend on the geometry of the gap G and @. This
time-dependent version of the SE is a type of dipole-blade antenna (Balanis, 2015; Hicks
etal., 2012). Those antennas play a role in astronomic radio-telescopes (Mozdzen et al.,
2017). Here we restrict our description to the stationary case. However, the electrostatic of
the SE is also important since in the low-frequency limit (w/c << 1, with c the velocity of
light) the time-dependent solutions tend to the electrostatic profiles times harmonic phases.

In this article, we are interested in the electric field inside the charge-free region D = {R>:
z>0} and the surface charge density on the sheets {R?: z =0} \ G. The boundary of the
region of interest D is denoted as dD. Authors of Ref. (Oliveira & Miranda, 2001) have
shown that the electric field E in D can be computed via a Biot-Savart-like law when the
gap region is infinitely thin. They proved the relationship by using analogies with magneto-
statics, specifically by comparing the scalar magnetic potential of a planar loop carrying a
steady current and the electric potential of the electrostatic system.

The alternative strategy in this article consists in writing the electric field E = V x ® as the
curl of a vector potential ® in the free-charge region, where the electric field is divergeceless
V-E =0. Since the Laplacian of the electric vector potential is V@ = V x® - V(V-®), it
can be reduced to the simpler equation

V20(r) = (V20x(r), V?0,(r), V?O,(r)) =0, reDUG, (1)

because every time-independent electric field is irrotational ¥V x E = 0 and one can impose
a Gaussian Gauge condition V- ® =0 on the vector potential. The electric potential vector
has been employed in different contexts where the use of ® can be advantageous in compar-
ison with the scalar electric potential i.e. numerical studies via Finite Element Method for
electrostatics (Semenov ef al., 2006), and engineering problems (Landis, 2002; Stark et
al., 2015; Albanese & Rubinacci, 1990; Zhang & Wang, 1999). We show that solving the
Laplace’s equation (1) together with Neumann boundary conditions on the finite gap will
equally derive in the Biot-Savart law like formula: An integral description of the electric
field without resorting to the magneto-statics analogy.

Grounded sheet

Figura 1. The physical system. A gaped SE is composed of two flat sheets at different
electric potentials separated by a gap in between (left). Electric vector potential of a
punctual charged particle (right).

The classical approach to derive the electric field of planar surface electrodes in Ref. (Oliveira
& Miranda, 2001) has been to map the traditional Dirichlet problem onto the much sim-
pler Biot-Savart-like problem: The integral expression for the electric field due to an arbi-
trarily shaped planar region kept at a fixed electric potential and embedded in a grounded
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plane. A similar approach has been proved efficient in (Salazar et al., 2019). As shown in
Ref. (Salazar et al., 2020), one can obtain the Biot-Savart law without solving the Laplace’s
equation. That alternative derivation is by employing the Helmholtz decomposition and
Green’s theorems. The current proposal is a first attempt to understand the transient phe-
nomenon, being the difference regarding the previously published works on this subject by
the authors.

Many contemporary applications such as antennas, electron traps, and microprocessor boards
include this phenomenology and require efficient descriptions of the electric field. Indeed,
SE are a promising candidates to build ion-trap networks suitable for large-scale quantum
processing (Seidelin et al.,, 2006; Chiaverini et al., 2005; Daniilidis ef al., 2011; Kim et
al.,, 2011; Hong et al., 2017; Mokhberi et al., 2017; Tao et al., 2018; Van Mourik et al.,
2020). The remaining parts of this article derive the Biot-Savart law with the alternative
approach.

Solution of the Laplace’s equation

In this section, we formulate the system in terms of the vector potential ® to calculate the
electric field in the free-charge space. For a single punctual charged particle this vector
potential takes the following form*

®puncrual(r) = %M‘P ()
A plot of this vector potential is shown in Fig. 1-right. One can understand that the battery
(responsible for the difference potential V,, between the electrode sheets) removes negative
charges from the inner metal sheet and transfers them to the outer sheet. The total electric
vector potential of the system comes from a superposition of individual electric vector po-
tentials (of each punctual charge on the sheets). Since Eq. (2) does not have z-component
one can expect that total vector potential fulfills ®-Z=0.

In the free-charge region the vector potential ® satisfies the Laplace’s equation Eq. (1). The
Laplacian equation is a particular case of the more-general Poisson equation

v20(r) =S(r)

where S is a source vector term. The analytical solution of the previous problem can be
obtained through the Green’s function,

0i(r) =~ [ Glr)Sind + ¢ [0:()V'G(r.r") ~Gr V'O ()] -dS. ()

with the {i} = {x,y,z} notation and G(r,r") the Green’s function. Since there are no electric
charges in D the source term in the Laplace’s equation is zero. Therefore, the surface term
is the only integral that contributes in Eq. (3):

0,(r) = ng[('Di(r’)V'G(nr')—G(r,r')V'G)i(r')]~dS

This last result can be written in Cartesian coordinates by only considering the surface
contribution of the electrodes laying on the xy— plane,

Q;(r)=- f]Rﬂ 0;(r")d.G(r,r") - G(r,r')&zr®,~(r')|2,=0dx'dy'.

“The formula for the vector potential can be found straightforwardly from the electric field of a punctual
particle
I q.

P
4re, r?
and the E = V x O identity under Gauss gauge condition V-® = 0.

Epunctual =
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In order to close the problem, we shall consider the Neumann boundary conditions for the
vector potential on the xy—plane. Thus, the Green’s function can be designed to satisfy
G=Gy(r,r"), with

V'G(r.r')-£=0.G(r.r")| =0 )
-

on the xy-plane. Hence, the definition of the vector potential simplifies to the solution of
0i(r) = [, Gn(r.r")0.0,")|,_ dx'ay. )
R2 /=0

Note also that the electric field on the metallic sheets is computed from the curl of the vector
potential. The electric field may be calculated by approaching the sheets on the xy—plane
from the z-direction:

11%1E:(o,o,EZ):(ay@)z—az®y,az®x—ax(:)z,ax@y—ax@y) vV (x,5,0)¢G.
=0t

For the single static punctual source, the z-component of the vector potential is exactly
€10 @ puncrual (1) -2 = 0 (see Eq. 2). The same occurs to the global vector potential due to
the charge distributions on the metallic sheets. That is explained since the global vector
potential is the superposition of potentials due to punctual charges. Therefore, ®,(r) =0,
and

lim E = (0,0,E;) = (-0.0,,0.0,0,:0,-9,0,) V (x,,0)¢G.

z—0*

The previous result implies that
20(r)| =0 ¥V (x3.0)¢G.
=

It means that the normal derivative of the vector potential on the xy—plane is zero every-
where except on the gap region, hence

0= [,Gn(r)3.01")|,_ dxay'= [ Gu(r)a,0i)|, dxay. ©

On the other hand, the electric field on the gap region between the sheets can be also com-
puted by evaluating the limit

lir%E:(Ex,Ey,O):(—ade,—c?y(I),O):(—8Z®y,8z@x,c9x®y—8x®y) vV (x,5,0)eG.
Z—)

As a result, the z-derivative of the vector potential on the gap d.® =: —-W is related to the
scalar potential, as follows

0.0 = (-0,®,0,2,0):=-W V¥ (x,%0)¢G.

It is convenient to write vector W in polar coordinates r = (u,¢,z) on the gap region, as
follows

109, 00 .
W(M7¢7Z) = _;%ﬁ-’_ E(b v (u7¢70) €G.
Thus, Eq. (6) takes the form
() =~ [ Gu(r. W ("), )

Now, regarding the definition of the Green’s function in Eq. (7), one can use the method of
images and propose Gy (r,r’) as the function of two punctual identical charges symmetri-
cally placed at 7’ and -7/,

1 1
27 [r—r'|

=0

1 1 1 1
Gy(rr)=———— | — , h lim Gy (r,r") =
V() = [47t|r—r’|]z, e ()
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It can be shown straightforwardly that this definition of the Green’s function fulfills the
boundary condition in Eq. (4). Finally, by replacing the previous Green’s function definition
into Eq. (7) the vector potential can be written as

W(r,) Zr/

G |r—7| ’

1
O(r)=— 8
(V=5 ®)
which is the solution of the Laplace’s equation of the electric vector potential imposing
Neumann boundary conditions on the gap region G. One can observe that electric vector
potential in Eq. (8) is mathematically equivalent to the standard vector potential in magne-
tostatics A(r) (Jackson, 1999), computed from

K(r") ,
o]

A(r) = 9

with K(r') a steady surface density current and B = V x A the magnetic field. In fact, both
vector potentials A and ® can be used to compute the B and E fields in the free-space. If
we study Eq. (9), one could state that electric currents are sources of the magnetic vector
potential in a Coulomb-like way. Similarly, spatial variations on the electric scalar potential
would be the sources of @(r) according to Eq. (8). Unfortunately, these interpretations are
quite subjective since both vectors potentials are not physically observable under a classical
viewpoint since they are not unique: Vector potentials depend on a certain gauge choice (i.e.
a Coulomb gauge).

Thus, the electric field is found from the curl of the vector potential,

/
E = V><®—2 / W(r) for z>0.

=

Using the vector identity V x [A(r,7")F(r')] = VA x F(r") with A = |r—#'["!, one finally
obtains the Biot-Savart like law

/ _IXZI
E(r):ifGW(r)(r r') dr. (10)

r=rT

The electric field in Eq. (10) is the electrostatic analogue of the magnetic field due to a closed
ribbon on the G region carrying a constant surface density current K(r). An analogous role
is played by W(r) in the SE electrostatic system. The Biot-Savart-like in Eq. (10) provides
an integral solution of the electric field when the W(r) field is known. That is exactly
the gapless limit case, where electrodes are infinitely close each other. In general, W (r)
is unknown and it must be constructed over G for gaped SE. In those cases W (r) can be
computed by approximating the scalar electric potential ¢ on the gap region. One strategy
to approximate ® on the gap forces the zero charge condition on the mid trajectory on the
gap. That strategy has been originally developed for the circular gaped SE in (Schmied,
2010). The same approach can be applied for arbitrary geometry gaped SE (Salazar et al.,
2022). Therefore, one can understand the vector potential approach ® here presented as a
versatile way to find solutions in electrostatics. It fits better the nature of gaped SE problems
rather than the traditional electric scalar potential .

The gapless limit

In the gapless limit, the G region is infinitely thick and it becomes a closed loop c. For
instance, if G is an annular region of AR thickness

G={(u,0):R-AR/2<u<R+AR/2A¢ €[0,27]},
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then G becomes a circular loop of radius R in the AR — 0 limit. In this limit, one can also
compute the W vector since the potential on z =0 is

Alli€m0d>(u,¢,0):Vo if u<R otherwise 0.

Hence, the W vector is computed from

lim W = lim -9,®(u,$,0)¢ =V,5(u-R)$ 11
Jim W= lim -0, ®(u,¢,0)9 = Vo (u-R)9, (1)
where the derivative of the unit step function is a Dirac delta function. Replacing Eq. (11)
into the surface integral Eq. 10, it becomes the following loop integral

for z>0,

Vo jg(r—r') xdr'
C

Tom |r—r']3

where the ¢ loop is counter-clock-wisely defined with respect to the z-axis. The result also
is valid for an arbitrary closed loop. The central result in Ref. (Oliveira & Miranda, 2001)
is recovered from Eq. (10) in the gapless limit.

Conclusions

The electric field of planar metal sheets under a constant potential difference separated by
a gap region has been studied in this article. The electric field is merely a Biot-Savart like
integral on the gap region. The integral expression has been the solution of the Laplace’s
equation of the electric vector potential associated with the electric field under Neumann
boundary conditions on the gap. In that sense, the vector potential formulation has described
the electric field of planar surface electrodes instead of the scalar potential approach. We
have proved that results in Ref. (Oliveira & Miranda, 2001) can be equally derived from
Eq. (10) in the particular case of an infinitely thin gap.

As a future work, one can study the non-stationary surface electrode where the metal sheets
are set to a time dependent scalar potential. This type of system is also important for engi-
neering since it is basically a dipole blade radiator. In that case, the electric vector potential
O(r) satisfies a wave equation which is essentially a 4-dimensional Laplacian under an
appropriate way to chose the Gauge. In this document we showed that it is possible to de-
termine the electric field of the system by solving the Laplace’s equation for the electric
vector potential. It is known that a time-dependent generalization of the magnetic vector
potential in Eq. (9) concerns the retarded solution of the wave equation (Jackson, 1999)."

The question is if there exist a retarded version of the electric vector potential ® which
enable us to compute the radiated electric field via E(r,t) = V x ©(r,7). Resembling over
Eqgs. (8) and (9), one can expect that the electric vector potential would certainly have a re-
tarded formula for the dynamic propagation case. As a future work we expect to generalize
the strategy presented in this document to find the time-dependent version of the electric
vector potential.

The present article demonstrated another plausible approach to studying the gaped SE ad-
vantageous regarding Ref. (Salazar et al., 2020) since it becomes mathematically simpler.
That is constructing the electric vector potential from a superposition of vector potentials

T As presented in the reference, the time-dependent version of Eq. (9) is given by

!
A(r,t):&fiK(r’t’“)dzr
G

47 [r=r'|

where fy,; refers to the retarded time zyer :=1—|r— r |/c, with ¢ the velocity of light, and the radiated magnetic field
B(r,t) =V xA(r,t).
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of individual static charges (see Fig. 1-right) on the metallic sheets and a Coulomb gauge
condition. Results in Ref. (Salazar ef al., 2020) have been alternatively derived here and
framed under an analytical strategy suitable to be generalized for time-dependent versions
of the gaped SE.
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