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Geometric uncertainty in non-paraxial interference
Incertidumbre geométrica en interferencia no-paraxial
Román Castañeda

Escuela de Física, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Colombia

Abstract
In this article, a novel meaning for the notion of uncertainty is discussed, within the framework of 
the non-paraxial interference theory based on confinement in geometric states of space. This novel 
meaning refers to the fact that, for any set of space states whose vertices are distributed in an arbitrary 
array of size less than 10λ , both the excitation provided by the geometric potential and the positions 
of the vertices of the states are completely uncertain, such that the complete set is represented by the 
Lorentzian well of an individual ground state of space, with vertex at any of the points of the array, 
even if the set is under the maximum prepared non-locality (i.e., under a strong geometric potential). 
It is shown that the geometric uncertainty is different but compatible with the Heisenberg uncertainty 
principle. In fact, geometrical uncertainty establishes both the upper limit of momentum uncertainty 
and the lower limit of position uncertainty in the Heisenberg principle.
Keywords: Uncertainty; States of space; Geometric potential; Confinement; Spatially structured wells.

Resumen
En este artículo se discute un significado novedoso para la noción de incertidumbre, en el marco 
de la teoría de interferencia no-paraxial basada en el confinamiento en estados geométricos del 
espacio. Este significado se refiere al hecho de que, para cualquier conjunto de estados del espacio 
cuyos vértices se distribuyen en un arreglo arbitrario de tamaño menor que 10λ , tanto la excitación 
proporcionada por el potencial geométrico como las posiciones de los vértices de los estados 
son completamente inciertas, de tal forma que el conjunto completo es representado por el pozo 
lorentziano de un estado base individual del espacio, con vértice en cualquiera de los puntos del 
arreglo, incluso si el conjunto está bajo la máxima no-localidad preparada (es decir, bajo potencial 
geométrico fuerte). Se muestra que la incertidumbre geométrica es diferente pero compatible con 
el principio de incertidumbre de Heisenberg. De hecho, la incertidumbre geométrica establece 
tanto el límite superior de la incertidumbre de cantidad de movimiento como el límite inferior de la 
incertidumbre de posición en el principio de Heisenberg.
Palabras clave: Indeterminación; Estados del espacio; Potencial geométrico; Confinamiento; Pozos 
espacialmente estructurados.

Introduction
Uncertainty is a principle of quantum mechanics that precludes the simultaneous measure-
ment of conjugated variables, such as position and momentum or time and energy, with 
arbitrary accuracy (Feynman et al, 1965). Because such simultaneous measurement 
is required for describing particle dynamics deterministically, uncertainty limits the 
deterministic knowledge of physical systems.

Preclusion of simultaneous accurate measurement of conjugated variables ( ),u v  is 
usually formalized by the canonical inequality u v α∆ ∆ ≥  , with ,u v∆ ∆  denoting the uncer-
tainties of the measured variables, α  is a real positive number (usually 1/2) and 2h π=  
with h the Planck’s constant (Feynman et al, 1965). Thus, if measurement accuracy of any 
of them, say u, arbitrarily increases so that 0u∆ → , then the uncertainty of the other variable 
increases arbitrarily, i.e. v∆ →∞ , thus impeding its accurate measurement.
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Single particle diffraction by slit masks has been used for demonstrating uncertainty 
between position and momentum, i.e. Heisenberg’s uncertainty principle (Feynman et al, 
1965; Matteucci et al, 2010). Slit width is associated to the uncertainty of the transverse 
position component x∆  of the particle that crosses the slit, while main maximum width 
of far-field diffraction pattern is associated to the uncertainty of the transverse component 
of particle momentum p∆ . So, paraxially approached diffraction (Born & Wolf, 1993) 
allows verifying the achievement of Heisenberg’s uncertainty principle 2x p∆ ∆ ≥   
straightforwardly.

Although this description of uncertainty is widely accepted, some authors have 
indicated important precisions that not only improve but also modify its physical 
meaning, thus making uncertainty independent of instrumental or experimental contexts 
(Ozawa, 2003; Ballentine, 2014). Some experiments have been performed to verify the 
accuracy of such new interpretations, thus indicating that the notion above seems to be 
naive and non-entirely correct (Erhart et al, 2012; Rozema et al, 2012). This has inspired 
an interesting debate about the meaning of the notion of uncertainty (Bush et al, 2013; 
Rozema et al, 2013).

From a different perspective, a new ontology has been recently proposed for single 
particle interference in ordinary space (Castañeda & Hurtado, 2023; Castañeda et 
al, 2023; Castañeda et al, 2021). In this theory, the fundamental role is played by 
ordinary space, which is conceived as a system with geometric states that confine light 
and single particles. Such states of space are realized as spatially structured Lorentzian 
wells, resulting from vacuum fluctuations. The wells become filled of light or particles 
after a significant number of individual experimental realizations, that is the segments 
of an interference experiment that begin with the local emission of a single photon or 
matter particle and end with its local detection, so that only one particle moves in the 
interferometer without connection with preceding or posterior particles (Castañeda et al, 
2023). So, recording of light or particles by a squared modulus detector, placed at a given 
well cross-section, reveals the structure of the geometric state of space, called interference 
pattern. In this context, diffraction is shown as a particular case of interference. The main 
goal of this paper is to discuss new meanings of uncertainty in the framework of this 
novel ontology.

Fundamentals
Mathematical formalism used in the following is deduced in detail in (Castañeda et al, 
2023) and therefore, its deduction is not included here but its main expressions are directly 
applied. Let us consider interference in the volume delimited by the mask plane M and the 
detector plane D, separated a distance z to each other, figure 1.

It has been shown that non-locality at M is the necessary and sufficient condition 
for producing interference in MD volume (Castañeda et al, 2021). It is represented by 
functions denoted as , that link pairs of points of M, specified 
as  in reduced coordinates, i.e.  denotes the separation vector of the pair 
of points and  is the midpoint between them.  is the prepared 
non-locality at M, with  the eigenfunction of Laplacian in Helmholtz equation 

, with eigenvalue  and k = ω/c for light waves of frequency ω  (c  is the 
light speed in vacuum) and k = p/

pk =
 for single matter particles of momentum p  (Helmholtz 

equation is the spatial component of both the wave equation and Schrödinger equation 
(Born & Wolf, 1993; Feynman et al., 1965)). The area of pairs of points with the same 
midpoint , for which  takes on non-negligible values, is called non-locality 
support. Outside it,  nullifies or takes on negligible values.  
is the non-local transmission function of the mask placed at M. It should be noted that 

. Local component of non-locality function, obtained by evaluating it 
for , gives  with , , 
and  the mask transmittance (Born & Wolf, 1993) at .
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Interference patterns are locally measured by squared modulus detectors at each point 
Ar  of D. They are represented by the observable (Castañeda et al, 2023)

   . (1)

Density operator

                                        
,                                      (2)

with  denoting adjoint, represents the individual excited states of space, resulting by 
exciting each base state of space by specific modes of the geometric potential. Indeed,

                                                             (3)

and

                       

.                               (4)

are the density operators for base states of space and geometric potential, respectively. The 
projection of self-adjoint kernel  on detection points of D gives the scalar, 
geometric and deterministic function

, (5)

whose local component, obtained by evaluating it for , gives

. (6)

Equation (6) describes the Lorentzian well with vertex at , that realizes the 
individual base state of space

 
 in MD volume, which confines light energy 

or single particles that enter it at its vertex, represented by coefficient   in Eq. 
(3). Equation (5) describes the mode of geometric potential  in MD volume, 
related to the pair of points , in such a way that, if

 
 then the geometric 

potential mode equally excites (spatially modulates) the base states with vertices at both 
points . Therefore,  and  are independent to each other, so that , 
and  if  for any .

By expressing
 

 and considering the Hermitic sym-
metry of Eq. (4) for the permutation  of any pair of points, i.e. for the two degrees 
of freedom in orientation of separation vectors, Eq. (4) can be expressed as

Figure 1. Conceptual sketch for interference in the volume delimited by M and D. Shadowed 
circles on M represent the non-locality supports. The cone with vertex at   represents the spatially 
structured Lorentzian well of the individual geometric state of space that confine light energy or 
single particles that enter at . Mathematical expressions are explained in text.
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,  (7)

by adding the contributions for the two degrees of freedom in orientation of separation 
vectors. Re denotes the real part. Integrand of Eq. (7) means that each geometric potential 
mode excites the base states of space with vertices at a given pair of points  with the 
same cosine-like spatial modulation. However, the spatial structures of the excited states 
are mirror symmetrical to each other due to the positions of their vertices, as shown later.

Because of geometric potential
 

, the individual excited states are realized 
as spatially structured Lorentzian wells

 
, i.e. the excitation distributes the 

confinement in specific zones within the base state volume. As a consequence, light energy 
and single particle quantum probability concentrate in such specific confinement zones.

Excitation uncertainty
Let us consider Young interference with two pinhole mask, with separation vector ,
whose non-local transmission function is  

, with  the Dirac delta. First two terms with factor  are 
the local component (i.e. transmission function of individual pinholes), while remaining 
terms with factor  are the non-local component with the two degrees of freedom in 
orientation for the separation vector. By inserting this non-local transmission in integrand 
of Eq. (1), the spatially structured wells of the two individual excited states of space in 
Young interference become

         .  (8)

First term of Eq. (8) describes the Lorentzian wells with vertices at  of base 
states of space, while the second term points out that Young interference is monomodal 
and, the geometric potential mode with vertex at the midpoint between pinholes, , 
equally excites the two base states.

Cross-section of the overlapped excited states of space at D determines the observable 
defined Eq. (1) for the Young interference pattern,

        .  (9)

A very important feature of Young interference is the dependence of geometric 
potential from pinhole separation. Specifically, there is an inverse relationship between 
the excitation spatial frequency and the pinhole separation. Because Lorentzian envelope 
restricts the angular spreading of excitation modulation, it should be expected that the 
geometric potential mode does not provide spatial modulation for pinhole separation 

, with  to be specified. More precisely, for  it takes on only positive values 
within Lorentzian envelope, instead of varying between positive and negative values. It is 
illustrated in figure 2.

Cosine-like characteristic interference excitation, provided by geometric potential 
mode for  > λ (Castañeda, 2017), is shown in (a). After shortening pinhole separation to 

 > λ in (b), only a wider axial main confinement zone is excited together with some lateral 
zones of low confinement. This geometric potential provides the characteristic diffraction 
excitation (Castañeda, 2017). By further shortening pinhole separation, spatial modulation 
of geometric potential become significantly smooth and axial main confinement zone 
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increases its angular spreading, as shown in (c). For   = λ/10 in (d), geometric potential 
mode takes on only positive values of its Lorentzian envelope, and this behavior remains 
unchanged for  < λ/10, graph (e). Therefore, Lorentzian cone of invariant geometry for    

 ≤ λ/10 seems to be the extreme shape of geometric potential mode.
Figure 3 illustrates the wells of individual states of space in Young interference, 

excited by geometric potential modes in figure 2 under maximal prepared non-locality al 
M. As expected, corresponding graphs in upper and bottom rows are mirror symmetrical 
to each other, with respect to the well axis, and graphs on columns 1 and 2 from left 
exhibit negative valued forbidden zones (Castañeda et al., 2023). Graphs (a), (f) show 
that geometric potential for interference excites a set of confinement zones for the 
propagation of light energy and single particles that enter each individual excited state 
of space at its vertex. In contrast, diffraction confinement in (b) and (g) occupies only 
the wider axial main zone, surrounding by zones with lower confinement. In graphs (c), 
(h), these lateral confinement zones disappear in each individual state of space, and their 
main axial confinement zones remain narrower than Lorentzian well of corresponding 
base state. However, for  ≤ λ/10 each individual excited state becomes identical to 
the base state of space, which indicates that geometric potential is unable to spatially 
modulate them.

It is confirmed by the complete excited state of space resulting by overlapping the two 
individual excited states, as illustrated in figure 4 for the examples in figure 3. A set of 
narrow disjoint confinement zones modulate the Lorentzian well as excited by geometric 
potential for interference, graph (a). Because of spatial entanglement of individual excited 
states of space (Castañeda et al., 2023), their forbidden zones are reduced to null points 
between consecutive confinement zones in the complete excited state. So, confinement 
zones behave as propagation channels for light energy and single particles. A wider main 
axial zone surrounding by lateral zones with lower confinement modulates the well as 
excited by the geometric potential for diffraction, graph (b). This confirms diffraction as 
particular case of interference. Because of geometric potential for  = λ/2, lateral low 
confinement zones are removed and axial main zone remains narrower than the base space 
of state, graph (c). However, for  = λ/10 graph (d), the complete excited state of space 
for interference becomes identical to the base state of space with vertex at the midpoint 
between the pinholes. This remains unchanged for  < λ/10, graph (e). Therefore, it is 
completely uncertain if both individual and complete states of space are excited by the 
geometric potential mode for  ≤ λ/10. This suggests a0 = λ/10.

The same behavior occurs by weak prepared non-locality, with the only difference that 
forbidden zones of both individual excited states are removed. Consequently, confinement 
zones of the complete excited state of space are not disjoint. Nevertheless,  ≤ λ/10 remains 
valid as criterion for excitation uncertainty.

Figure 2. Axial sections of geometric potential for Young interference with different pinhole 
separation  (λ= 4μm for light waves and photons, and λ= 4pm for single matter particles). Vertical 
profiles show the spatial modulation excited at z = 10λ. Horizontal axis 0 ≤ z ≤ 10λ. Vertical axes 
are the components of ξA on left side and rA on right side mutually parallel to the pinhole separation 
vector. Axes units are μm for light waves and photons, and pm for single matter particles.
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The analysis above can be extended for interference with masks with arbitrary 
distributions of space state vertices. Indeed, each geometric potential mode, activated by 
arbitrary prepared non-locality, excites only two specific base states of the distribution. 
As a consequence, Eq. (1) can be expressed as the overlapping of a set of Young 
interference contributions. It is illustrated without loss of generality in figure 5, by 
considering a mask with a regular 3x3 pinhole array, whose size is determined by the 
length of array diagonal L. It should be noted that the spatially structured Lorentzian 
well of the complete excited state of space is shaped by the corresponding geometric 
potential. For first column on the left, array size and spacing fulfil interference condition 
L >  > λ (Castañeda, 2017), so that the spatial modulation of the well cross-sections at 
any distance z determines an interference pattern after a significant number of individual 
experimental realizations. For second column from left, diffraction condition L > λ and 

 < λ is fulfilled (Castañeda, 2017).

Figure 3. Axial sections of wells of individual states of space in Young interference, excited by 
geometric potential modes in figure 2 under maximal prepared non-locality at M. Vertical profiles 
show well cross-sections at z = 10λ, which exhibit forbidden zones for  ≥ λ, removed for  < λ. 
Dotted line profile describes Lorentzian cross-section of corresponding base state of space. It points 
out that each individual excited state becomes identical to its base state of space for  ≤ λ/10. Graph 
axes and units are the same as in figure 2.
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Figure 4. Axial sections of spatially structured Lorentzian wells for Young interference, resulting 
from overlapping the individual states of space in figure 3. It should be noted that spatial structure 
of each well is identically shaped as the corresponding geometric potential mode in figure 2. Vertical 
profiles show the well cross-sections at z = 10λ. Dotted line profile describes Lorentzian cross-section 
of base state of space with vertex at the midpoint between pinholes. Complete excited state of space 
becomes identical to the base state for   ≤ λ/10. Graph axes and units are the same as in figure 2.
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Figure 5. Cross-sections at different distances z of geometric potentials (rows 1, 3, 5 from top) and 
spatially structured Lorentzian wells (rows 2, 4, 6 from top) for interference with a regular array of 
3x3 pinholes under maximal prepared non-locality. Array vertical and horizontal spacing is  = L/2

 (L is the length of array diagonal and λ = 4μm for light and single photons and 4pm for single 
matter particles). Horizontal and vertical axes are the cartesian components of rA

. Axes units are μm 
for light waves and single photons, and pm for single matter particles.
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Well cross-sections at z ≥ λ in (g), (l) exhibit the characteristic shape of diffraction 
patterns, that is main axial confinement zone surrounding by zones of lower confinement. 
However, an important feature is appreciated at very short distance from the mask, graphs 
(b), i.e. array discreteness. This confirms the notion that discreteness of individual space 
states is required for diffraction (Castañeda, 2017). Indeed, for  < L < λ, graphs on third 
column from left, geometric potential provides a smooth modulation for the excited sate of 
space, i.e. the lateral zones disappear and the main axial confinement zone becomes wider, 
although array discreteness remains appreciable at very short distance from mask.

For L ≤ λ/10, graphs in columns 4 and 5 from left, array discreteness is not appreciable 
even at z = λ/10 and complete excited state of space becomes identical to the base state 
of space with vertex at any of the nine pinholes, no matter that the pinhole array is 
under maximum prepared non-locality. The invariance of this behavior for array sizes 
L ≤ λ/10 allows us generalizing the geometrical excitation uncertainty by this inequality. 
Specifically, it is completely uncertain that any set of individual states of space with 
vertices distributed on an area of size L ≤ λ/10 is excited by a geometric potential, because 
the geometric state of space resulting from their overlapping is identical to the base state 
of space with vertex at any point in the distribution area. It is useful to assume the vertex 
position of complete space state at the array midpoint, even if this point is not the vertex 
of an individual geometric state of set.

The independence of this result from physical and statistical properties of light, 
single photons and single matter particles propagating in the interferometer leads to the 
following discussion, related to the use of diffraction as proof of Heisenberg’s uncertainty 
principle (Feynman et al., 1965; Matteucci et al., 2010). Figures 4 and 5 show that 
angular spreading of the main axial confinement zone increases as the size of vertex array 
of individual excited states of space diminishes. By single matter particle interference, 
vertex array is considered a set of points for eventual particle crossings through the mask 
at M. So, in quantum mechanics context, vertex array size can be connected with particle 
position uncertainty at M. Furthermore, the angular spreading of far-field diffraction central 
maximum is connected with the uncertainty of the transversal component of the particle 
momentum. Thus, the inverse relationship between the array size and the central maximum 
angular spreading has been interpreted as a proof of Heisenberg’s uncertainty principle, 
which formalizes a fundamental quantum attribute of particles. It is reasonable to propose 
such connections because, in each individual experimental realization, particle should enter 
only one of the individual states of space at its vertex, and propagates through the space state 
confined in any of its zones. So, by considering the particle arrival to the mask as a statistical 
event, the vertex array at M should constitute an area of particle position uncertainty, that 
could be interpreted as the position uncertainty for the particle at the mask. Furthermore, 
particle is free of propagating along any path, under the condition that the path remains 
contained within the main axial confinement zone of the excited state for diffraction. Paths 
can be distinguished by their transversal components, determined by momentum transversal 
component. Nevertheless, the specific path following by the particle on propagation is 
unknown, which means that transversal momentum component is uncertain.

Despite this compatibility between Heisenberg’s principle and space states for 
diffraction, there are significant differences between them. It has been proved that the 
vertex array is specified by the setup configuration, the geometric potential is activated 
by the prepared non-locality at the mask and diffraction is determined by the vertex array 
size and spacing, independently of physical and statistical attributes of particles. All these 
features are formalized by deterministic parameters, that specify the spatial structure of 
the excited state of space, which in turn results in the setup as a consequence of vacuum 
fluctuations (Castañeda & Hurtado, 2023). In addition, the limit L ≤ λ/10 of the set of 
excited states of space has been not considered in quantum mechanics, because its paraxial 
approach is unable to account for it. This limit seems to restrict the use of diffraction in 
connection with Heisenberg’s principle, because for L ≤ λ/10 the angular spreading of the 
well is maximal and remains fixed (~68.5° for a decay in ~95% (Castañeda, 2017)), and 
the well cross-section remains Lorentzian.
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Vertex position uncertainty
In absence of prepared non-locality, geometric potential is not activated so that 

 and Eq. (1) reduces to the overlapping of base states of space, i.e.

     . (10)

Equation (10) points out that base states of space cannot induce spatially modulations 
on them. Moreover, at long enough distance from M, the cross-section geometry of 
overlapped base states equals the geometry of the cross-section of an individual base 
state, independently of the number of overlapped base states and the distribution of their 
vertices at M. It is illustrated in figure 6 for two base states and generalized in figure 8 
by considering an array of 3x3 base states. So, the connection between diffraction and 
Heisenberg’s principle seems to be feasible by providing

 
, L > λ and  < λ. 

For , the angular spreading of far-field diffraction is maximal, i.e. identical to 
the Lorentzian well of a base space. Indeed, figure 6 shows the excellent fit, at z = 10λ, 
between the cross-section profile of the overlapped base states of space and the individual 
base state with vertex at the midpoint between the mask pinholes.

Figures 6, 7 show a further feature of geometric uncertainty, involved in Eq. (10). figure 
6 points out that, for each pinhole separation, there is a finite distance z0 so that the two base 
states can be distinguished for z ≤ z0. In addition, z0  0 as   0. Therefore, it should be 
interesting to analyze the distinguishability related to the excitation uncertainty  < λ/10.

Figure 6. Axial sections of the overlapping of base states of space in Young interference, for different 
pinhole separations . Vertical profiles compare, at z = 10λ, the cross-sections of the overlapped 
wells (solid line) with the Lorentzian cross-section of the base state of space with vertex at the 
midpoint between the mask pinholes (dotted line). The overlapped state of space becomes identical 
to the base state for  ≤ λ/10. Graph axes and units are the same as in figure 2.

Figure 7. Cross-section profiles at different distances z, of the overlapping of base states in Young 
interference, for different pinhole separations  ≤ λ/10. In all cases, solid line profile with flat 
maximum is corresponding to z = . For z <  the profiles exhibit two distinguishable maxima, 
corresponding to each base state. For z >  the profiles become Lorentzian, so that the two base 
states are not distinguishable.
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Cross-section profiles in figure 7 describe the overlapping of two base states of space 
along a very short distance from mask, z ≤ 0.3 λ, for pinhole separations  ≤ λ/10. They 
suggest to consider z =  as limit distance for base state distinguishability. Profile at this 
limit distance exhibits a flat maximum, which evolve to two maxima along z <  corre-
sponding to distinguishable base states, and to only one acute maximum along z >  , so 
that the two base states become undistinguishable to each other, and the overlapped state 
exhibits the same geometry as the individual base state with vertex at the midpoint between 
the pinholes.

This geometrical non-distinguishability can be interpreted as base state vertex position 
uncertainty, because the Lorentzian wells of all the base states with vertices in the area 
of radius r = λ/10 centered at a given point are identical to the Lorentzian well of the 
individual base estate with vertex at the center for z ≥ λ/10. In other words, the Lorentzian 
well remains invariant no matter the position of its vertex in such area, and therefore, its 
vertex position is completely uncertain within such area. As a consequence, single particles 
that arrive to any point within the uncertainty area become confined in the base state with 
vertex at the area center, no matter the statistics of the particle arrivals.

The analysis above can be generalized to any set of base states of space, with an 
arbitrary distribution of vertices of size L in the mask. So, if L ≤ λ/10 then all the base states 
of space are represented by the individual Lorentzian well with vertex at the midpoint of 
the array. It is illustrated in figure 8 for an array of 3x3 vertices at M. Graph (d) is the cross-

Figure 8. Cross-sections at different distances z of the overlapping of Lorentzian wells with vertices 
at the 3x3 pinhole array of a mask placed at M. Array vertical and horizontal spacing is   = L/2  
(L is the length of the array diagonal and λ = 4μm for light and single photons and 4pm for single 
matter particles). Horizontal and vertical axes are the cartesian components of rA

. Axes units are μm 
for light waves and single photons, and pm for single matter particles.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)



805

Geometric uncertainty in non-paraxial interference
47(185):795-806, octubre-diciembre de 2023. doi: https://doi.org/10.18257/raccefyn.1952
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 

section at the distinguishability limit z = L = λ/10, so that the 3x3 array is distinguishable 
in (a)-(c) and remains undistinguishable in (e). Graphs on bottom row, z = 10λ, show 
that cross-sections of all the arrays are identical to the Lorentzian cross-section of the 
individual base state with vertex at the array midpoint. Graphs on columns for L ≤ λ/10 
indicate that Lorentzian well of overlapped state of space remains identical to Lorentzian 
well of this individual base state along z ≥ λ/10.

It is worth clarifying the difference between vertex position uncertainty and resolu-
tion limit. The term resolution limit refers to quantitative descriptors of the ability of an 
optical system (mainly imaging and spectroscopy systems) to distinguish fine details 
(Born & Wolf, 1993). Therefore, resolution limit is a characteristic of optical system 
performance. Geometric uncertainty refers to a property of the states of ordinary space, 
described by the quantitative limit L ≤ λ/10, with L the size of state vertex array. If this 
condition is satisfied, then the complete array behaves as an individual base state, whose 
vertex can be placed in any of the array points, even at the center of the array no matter 
that this point is not the vertex of a space state of the array, and no matter the prepared 
no-locality on the mask plane. So, both the excitation provided by the geometric potential 
and the vertex position of the space state are completely uncertain, although the vertices 
of the array can be resolved for z < λ/10, as illustrated by profiles in figure 7.

An interesting connection between Heisenberg’s principle and geometric uncertainty 
can be appreciated by considering , with  Heisenberg’s position uncertainty. 
Therefore, Heisenberg’s principle leads to , i.e. 

 
and, by using de 

Broglie’s formula  (Feynman et al., 1965), it gives  for Heisenberg’s 
momentum uncertainty. By considering the particle confinement in the base state of 
space due to the Heisenberg’s position uncertainty, and assuming the particle enters the 
base state with the momentum parallel to the Lorentzian well axis, then  should be 
contained in the angular spreading of the base state. It means 
, which is compatible with Heisenberg’s principle. Nevertheless, this result has a further 
meaning, not implied by Heisenberg’s principle, i.e. it seems to establish an upper limit 
for   due to the geometry of the Lorentzian well of base state of space. In addition, 
the position uncertainty  cannot be reduced by using smaller openings because 
arrays of points with sizes L ≤ λ/10 are associated to a unique base state of space with a 
fixed Lorentzian geometry. Thus, λ/10 seems to be the lower limit for . Such extreme 
limits for the notion of uncertainty due to the geometrical properties of states of space are 
proposed for the first time in this paper.

Conclusion
The notion of geometric uncertainty has been discussed in the framework of the non-
paraxial interference theory based on confinement in geometric states of space. This 
notion refers to two important features of any set of excited states of space, whose vertices 
distribute in an arbitrary array of size L, and is formalized by the condition L ≤ λ/10. If 
this condition is fulfilled, then both the excitation provided by the geometric potential 
and the vertex position of the states become completely uncertain, i.e. the set of states 
(i) are not spatially modulated, even under maximal prepared non-locality, and (ii) are 
represented by the Lorentzian well of an individual base state of space with vertex at any 
point of the array (it is useful to assume the vertex of this well at the midpoint of the array, 
even if this point is not a vertex of any state of the set). Geometric uncertainty is different 
but compatible with Heisenberg’s uncertainty principle. In fact, it establishes both the 
upper limit for Heisenberg’s momentum uncertainty and the lower limit for Heisenberg’s 
position uncertainty. It should be mentioned that the limit λ/10 is a criterion established by 
numerically comparing the geometries of the base state and the excited states of ordinary 
space. Descriptors like the rms-value for cross-section comparison at z ≥ λ/2 support this 
limit with a precision of order 95%.
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