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Confinement and spatial entanglement:
phenomenology of a new interference principle
Confinamiento y entrelazamiento espacial:
la fenomenología de un nuevo principio de interferencia
    Román Castañeda

Departamento de Física, Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Colombia

Abstract
Recently, the novel confinement principle in spatially-structured Lorentzian wells was reported to 
describe in a unified way the interference of classical waves and singular quantum particles in a causal 
framework in ordinary space. The phenomenology derived from this principle offers significant 
advantages over the conventional classical and quantum formalisms of interference founded on wave 
superposition. This paper presents a conceptual analysis of such a principle and its main implications 
indicating its fundamental differences from the standard descriptions.
Keywords: Interference; Diffraction; Geometric potential; Confinement; Entanglement.

Resumen
Recientemente se reportó el novedoso principio de confinamiento en pozos lorentzianos espacial-
mente estructurados para describir, de manera unificada, la interferencia de ondas clásicas y partículas 
cuánticas singulares en un marco causal en el espacio ordinario. La fenomenología derivada de este 
principio ofrece ventajas significativas frente a las formulaciones clásica y cuántica convencionales 
de la interferencia fundadas en la superposición de ondas. En este artículo se presenta un análisis 
conceptual de dicho principio y sus principales implicaciones, indicando sus diferencias fundamentales 
con la descripción estándar.
Palabras clave: Interferencia; Difracción; Potencial geométrico; Confinamiento; Entrelazamiento.

Introduction
The term interference refers to peculiar spatial characteristics of the distribution of light 
energy propagating in free space or the quantum particles moving in field-free regions. In 
such environments, light waves and single massive (non-relativistic) particles, respectively, 
obey the classical wave equation and the Schrödinger equation (Born & Wolf, 1993; 
Mandel & Wolf, 1995; Feynman et al., 1965; Feynman & Hibbs, 1965). However, it is 
well known that interference is exhaustively described by the spatial (or time-independent) 
components of these equations regardless of the differences between their time propagators.

The Helmholtz equation describes the spatial components of both the classical wave 
equation in free space and the Schrödinger equation for field-free regions. The classical or 
quantum context for the Helmholtz equation is specified by its eigenvalue, i.e., it involves 
the wave frequency in the case of light but the momentum in the case of massive particles. 
This mathematical generality of interference implies that its phenomenology (i.e., its 
description in ordinary space, which is the environment of the corresponding experiments) 
in any classical and quantum contexts should be supported by a unique principle.

Although wave superposition is widely accepted as a fundamental principle of physics, 
in the case of interference with massive particles, it does not refer to ordinary space but to a 
mathematical environment called Hilbert space (Feynman et al., 1965). As a consequence, 
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in quantum interference, the wave superposition cannot provide a phenomenological 
description but only a predictive estimation of the experimental outcomes. The prediction 
accuracy of the interference patterns with massive particles, strongly supported by the 
experimental outcomes (Matteucci, 2011; Bach et al., 2013; Tavabi et al., 2019), cannot 
hide the lack of phenomenological generality of the wave superposition.

An alternative notion, i.e., the confinement in spatially-structured Lorentzian wells, 
overcomes this limitation of wave superposition by maintaining the mathematical 
accuracy of the classical and quantum interference predictions. Indeed, this notion leads 
to the description of interference with waves and single massive particles in ordinary 
space. Its mathematical and physical features have been discussed in detail (Castañeda & 
Matteucci, 2017; Castañeda et al., 2021) and illustrated with predictions of experimental 
patterns obtained specifically with single electrons and molecules (Castañeda et al., 
2016a, 2016b; Castañeda & Matteucci, 2017). For this reason, the confinement in 
spatially-structured Lorentzian wells has been proposed as the unique general principle of 
interference (Castañeda et al., 2021).

A conceptual discussion of confinement phenomenology is pertinent and necessary 
to clearly appreciate its differences and advantages as compared with the standard optical 
and quantum formalisms. In this paper, the confinement ability of space is discussed and 
special attention is paying to its spatial structuration. It has been shown that nonlocality 
prepared on a mask triggers the build-up of interference patterns (Castañeda & Matteucci, 
2019). Subsequently, the geometric nature of the prepared nonlocality is contrasted with 
the standard notion that conceives it as a physical property of waves or particle beams 
moving in the setup, and a very special feature of the spatially structured confinement 
under strong nonlocality, called spatial entanglement, is discussed. Such a feature ensures 
disjoint distributions of the confinement zones whose cross-sections account for the highly 
contrasted interference patterns. A summary of the analysis and the conclusions is then 
presented at the end of the paper.

For an appropriate analysis, symbolic mathematics and illustrations are used while   
the discussions are focused on the meaning of the expressions rather than on their  
algebraic definitions and developments, which are not included here but can be revisited 
in several previous papers (Castañeda & Matteucci, 2017, 2019; Castañeda et al., 
2016a, 2016b, 2021).

¿Can free-space confine?
In the standard interference formalisms, free space is a Newtonian concept, i.e., a                                                                                                                                                
uniform, isotropic, and passive scenario where physical phenomena take place. Accord-
ingly, interference features are completely attributed to the properties of waves and 
particles, which leads to a phenomenological description of wave interference in ordinary 
space but only as far as the prediction of single-particle interference in the Hilbert space 
is concerned.

Nevertheless, it has been shown that a general phenomenological description of 
interference in ordinary space both with waves and single particles can be accurately 
formulated by regarding free space from a non-Newtonian perspective, i.e., as a physical 
system with a geometrical behavior (Castañeda & Matteucci, 2017, 2019; Castañeda 
et al., 2021). To analyze it, let us start by considering the configuration of a non-paraxial 
interference setup as conceptually depicted in figure 1. In the preparation and measurement 
(P&M) scheme, it is realized by three planes (labeled S, M, and D) that delimit two 
consecutive stages in the setup, i.e., the preparation (SM) stage between S and M separated 
by a distance z′ , and the measurement (MD) stage between M and D at a distance z  from 
each other. The reduced coordinates ( ),A D′ ′r r  and (ξ

A
, ξ

D
) (Castañeda et al., 2020) are 

defined at the S and M planes, respectively, to determine univocally pairs of points on 
them, which are denoted as 2A D±′ ′ ′= ±r r r  and ξ± = ξ

A
 ± ξ

D 
/2, while individual points at 

the D plane are determined by the coordinate Ar .
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The spatial components of both the classical wave equation in free space and 
the Schrödinger equation for field-free regions are given by the Helmholtz equation 

2 2 0kψ ψ∇ + =  where ψ  is the eigenfunction of the Laplacian operator at any point in 
the setup, with eigenvalue 2k− , and k cω=  for frequency waves ω  and k p=   
for particles of momentum p . The universal constants ,c   are respectively the light 
speed in a vacuum and Planck’s constant divided by 2π . It has been shown (Castañeda 
& Matteucci, 2019) that products ( ) ( )tψ ± ±′ ′r r  and ψ(ξ±) t(ξ±) realize the boundary 
conditions for the SM and the MD stages, respectively, with ( )t ±′r  and t(ξ±) being the 
complex transmission functions at the S and M planes, respectively.

The exact solution of the Helmholtz equation for any point in the setup can be obtained 
by applying Green’s theorem (Arfken, 1970), which leads to the eigenfunction at the D 
plane in terms of the expansion (Castañeda et al., 2020)

ψ(r
A
) = ∫

M 
d 2 ξ

A
 ψ(ξ

A
) t(ξ

A
) Θ(ξ

A
, r

A
, z, k),              (1)

where Θ(ξ
A
, r

A
, z, k) denotes Green’s functions defined in the volume of the MD stage, 

a set of orthogonal, geometrical, time-independent, deterministic, and complex valued 
eigenfunctions of the Laplacian operator. Indeed, Green’s functions connect each ξ

A
 point 

on the M plane with any r
A
 point on the D plane, as pointed out by their arguments. The 

explicit mathematical form of Θ(ξ
A
, r

A
, z, k) is deduced in Castañeda & Matteucci (2019).

The aim of the setup in figure 1 is to measure the spatial distribution of the optical 
field irradiance or the single particle arrivals at the D plane by attaching a square 
modulus detector there. Such measurements are proportional to the physical observable

( ) ( ) ( )2

A A Aψ ψ ψ ∗=r r r , so Eq. (1) allows expressing it straightforwardly in terms of 
the expansion:

|ψ(r
A
)|2 = ∫

M
 ∫

M 
d2  ξ

A
 d2 ξ

D
 w(ξ+, ξ-) τ(ξ+, ξ-) Φ(ξ+, ξ-, rA

, z, k)      (2)

over the geometric, deterministic, time-independent, and complex-valued kernel
           Φ(ξ+, ξ-, rA

, z, k) = Θ(ξ+, r
A
, z, k) Θ* (ξ-, rA

, z, k)              (3)

defined in the volume of the MD stage. In Eq. (2), it is worth noting that the measurement 
of the physical observable at the D plane explicitly implies the requirement of nonlocality 
prepared as a boundary condition at the M plane, which is formalized by the product of the 
non-locality function (Castañeda et al., 2021).

Figure 1. Conceptual sketch of the interference setup in the P&M scheme. S: source plane, M: 
mask plane, and D: detector plane. The reduced coordinates at the S and M planes are indicated, 
A correlation cone is depicted in the preparation SM stage, and individual spatially-structured 
Lorentzian wells are depicted in the measurement MD stage. The mathematical expressions are 
explained in the text.
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w(ξ+, ξ-) = ψ(ξ+) ψ* (ξ-) = |w(ξ+, ξ-)| exp (iα(ξ+, ξ-))         (4)

and the non-local transmission function (Castañeda et al., 2021)

  τ(ξ+, ξ-) = t (ξ+) t*(ξ-) = |τ(ξ+, ξ-)| exp (iϕ(ξ+, ξ-)).           (5)

The term “nonlocal(ity)” refers to the dependence on pairs of points (ξ+, ξ-) in the 
ordinary space of the functions defined in Eqs. (3) to (5). Additionally, these functions 
have Hermitic symmetry related to the permutation of such points, i.e., Φ(ξ+, ξ-, r, z, k) = 
Φ* (ξ-, ξ+, r, z, k), w(ξ+, ξ-) = w* (ξ-, ξ+), and τ(ξ+, ξ-) = τ* (ξ-, ξ+). They also include local 
components determined for ξ+ = ξ- = ξA

, i.e. ξ
D 

= 0, which take respectively the forms   
Φ(ξ

A
, r

A
, z, k) = |Θ(ξ

A
, r

A
, z, k)|2, i.e., real-valued and positive definite local-kernel modes, 

w(ξ
A
, ξ

A
) = |ψ(ξ

A
)|2, the physical observable that describes the spatial distribution of the 

light irradiance or the quantum probability of single particle arrivals at the M plane, and 
τ(ξ

A
, ξ

A
) = |t(ξ

A
)|2 with 0 ≤ |t(ξ

A
)|2 ≤ 1, the transmittance placed at the M plane.

For the phenomenology, it is crucial to separate the local and non-local contributions 
from the M plane in Eq. (2). It is straightforwardly performed by manipulating the 
integration limits appropriately, thus expressing the physical observable at the D plane as

                     |ψ(r
A
)|2 = |ψ(r

A
)|

R
2     + Λ(r

A
),                        (6)

with
  |ψ(r

A
)|

R
2     = ∫

M
 d2 ξ

A 
|ψ(ξ

A
)|2 |t(ξ

A
)|2 Φ(ξ

A
, r

A
, z, k)          (7)

a real-valued and positive-definite function, i.e., a physical observable defined at the D 
plane, and

Λ(r
A
) = 2 ∫

M 
∫M    d2 ξ

A
 d2 ξ

D
 |w(ξ+, ξ-)| |τ(ξ+, ξ-)|, 

× Re [Φ(ξ+, ξ-, rA
, z, k) exp(iα(ξ+, ξ-) + iϕ(ξ+, ξ-))]    (8)

with Re denoting the real part, which is obtained by considering the Hermitic symmetry 
of the integrand and by adding the contributions due to the two degrees of freedom in the 
orientation of the separation vectors realized by the permutation of the pair of points, i.e., 
ξ

D 
↔ -ξ

D
. The real-valued function ( )AΛ r  in Eq. (8) takes on positive and negative values 

to achieve ( ) ( )2

A AR
ψ ≥ Λr r  for ( ) 0AΛ <r .

It is important to discuss at this point some features of the expressions above. The 
nonlocality function differs from the two-point spatial correlation (called in optics the 
cross-spectral density) (Born & Wolf, 1993) in that the first does not involve the ensemble 
average over a great enough number of experimental realizations that the second does. 
The nonlocality function denotes a single component of the ensemble corresponding to 
an individual experimental realization. This term refers to the event that begins with a 
local emission of a wave disturbance or a single particle at the S plane and ends with its 
local detection at the D plane. Consequently, Eq. (2) describes the detection of a local and 
instantaneous value of light energy or the arrival of a single particle to the detector.

This formalization of the individual experimental realizations is not explicitly 
considered in the standard interference formalisms. In optics, the light is regarded as a 
stochastic process (Mandel & Wolf, 1995) and the detector averages its energy fluctuations 
during the integration time. Such time average equals the ensemble average because of the 
ergodicity of light (Mandel & Wolf, 1995). The ensemble average of Eq. (2) leads to 
the conventional description of the cross-spectral density propagation (Mandel & Wolf, 
1995). However, the current technology is capable of single photon detection, so Eq. (2) 
has become experimentally feasible in optics with no need for averaging.

In quantum mechanics, a single particle moves randomly in field-free regions of 
ordinary space while Eq. (2) is regarded as the prediction calculation of the experimental 
outcomes in the Hilbert space. From this point of view, Eq. (2) cannot account for the 
phenomenological description of the single particle behavior in the setup. Furthermore, 
the ensemble average of Eq. (2) is required because the predicted interference pattern is 
built up after recording a great enough number of random individual particle arrivals to 
the detector.
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As shown in the next section, the stochastic fluctuations of light, as well as the random 
appearance of the interference build-up with single particles, are closely related to the 
emission properties of the source. However, the preparation of the non-locality function 
w(ξ+, ξ-) is profoundly geometric and related to the SM stage configuration. This feature, 
together with the geometric definition of the non-local kernel Φ(ξ+, ξ-, r, z, k), related to 
the MD stage configuration, suggests that Eq. (2) can actually describe the phenomenology 
of individual experimental realizations of interference with light and single particles in 
ordinary space.

Interference is a conservative phenomenon. Consequently, the conservation law of 
the light energy, as well as the normalization of the quantum probabilities at the M and D 
planes, lead to the condition

               ∫
D
 d2 r

A
 |ψ(r

A
)|2 = ∫

M
 d2 ξ

A
 |ψ(ξ

A
)|2 |t(ξ

A
)|2.                       (9)

Figure 2. Axial sections for 0 ≤ z ≤ 20λ (where λ = 4pm is the de Broglie wavelength for single 
matter particles and λ = 4pm is the wavelength for light waves) on the left column and cross-sections 
at z = 20λ on the right column of |ψ(r

A
)|

R
2   for a mask whose transmission function has a linear regular 

array of five point-openings with a spacing of a = 3λ at the M plane (left extreme of the axial 
sections). A Gaussian boundary condition |ψ(ξ

A
)|2 ∝ exp[-|ξ

A
|2/(2σ

A
2  )] is established at this plane with 

variable standard deviation whose values ensure the isolation of the central opening in (a) and (b), 
the inclusion of three openings in (c) and (d), and the covering of the complete array in (e) and (f). 
The axes units are pm for single matter particles and μm for light waves.
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The replacement of Eqs. (6) to (8) in (9) leads straightforwardly to 
     ∫

D
 d2 r

A
 Φ(ξ

A
, r

A
, z, k) = ∫

D
 d2 r

A
 |Θ(ξ

A
, r

A
, z, k)|2 = 1                (10)

and ∫
D
 d2 r

A
 Λ(r

A
) = 0, which implies

                       ∫
D
 d2 r

A
 Φ(ξ+, ξ-, rA

, z, k) = 0,                                (11)

at any distance z ≥ 0 from the M plane.
To discuss the phenomenological meaning and implications of these results, let us 

look at the graphs |ψ(r
A
)|

R
2    in figure 2 and Λ(r

A
) in figure 3 for specific but representative 

examples. According to the specifications in the figure 2 caption, the boundary condition 
(a Gaussian light irradiance distribution or a Gaussian quantum probability at the M plane) 
determines the number of array openings at which the light disturbance or a single particle 
can enter the MD stage depending on the value of the standard deviation σ

A
. In (a), (b), it 

isolates the central opening at ξ
A

 = 0, thus reducing Eq. (7) to |ψ(r
A
)|

R
2    = |ψ(0)|2 |t(0)|2 Φ(0, 

r
A
, z, k) and Eq. (8) to null. Consequently, the observable recorded by the detector is |ψ(r

A
)|2  

= |ψ(r
A
)|

R
2   . The same result is obtained by blocking all the openings around the central one. 

It seems, then, that two or more openings should remain open and be crossed by light 
disturbances or single particles to obtain non-null values for Eq. (8), although only one 
opening is crossed in each individual realization.

The kernel mode Φ(0, r
A
, z, k) describes the cone in the MD stage with the vertex at 

ξ
A

 = 0 (Figure 2a), and rotation symmetric cross-section with Lorentzian profile at any 
distance z from the vertex (Figure 2b). The boundary condition |ψ(0)|2 |t(0)|2 denotes the 
local value of the light energy or the quantum probability of the single particle that emerges 
from the mask at the cone vertex. The physical observable |ψ(r

A
)|

R
2    i.e., the cross-section of 

the cone at the D plane, denotes the spatial distribution of the light energy, as well as the 
quantum probability over the detection area. The normalization in Eq. (10) indicates that: 
(i) the light energy entering the cone at its vertex will distribute completely in the cone 
cross-section at any distance from the vertex, or (ii) the single particle that crosses the 
mask at the cone vertex will move to the D plane within the cone. In other words, the light 
energy, as well as the single particle, will be confined in the cone volume, so that the cone 
is actually a well. The Lorentzian cross-section of the well indicates that the light energy 
concentrates or the single particle moves preferably around the well axis.

In figure 2c-d, σ
A
 grows to cover three openings of the mask placed at ξ

A 
= -a, 0, a so 

the Lorentzian wells Φ(ξ
A
, r

A
, z, k), with vertices at these three points, appear in the volume 

of the MD stage. If the nonlocality function at the mask plane nullifies, then the physical 
observable at the D plane is described by

|ψ(r
A
)|2 = |ψ(r

A
)|

R
2    = |ψ(-a)|2 |t(-a)|2 Φ(-a, r

A
, z, k)

+ |ψ(0)|2 |t(0)|2 Φ(0, r
A
, z, k) + |ψ(a)|2 |t(a)|2 Φ(a, r

A
, z, k).

This means that the light disturbances or the single particles at the vertex of each well, 
represented by the boundary condition |ψ(ξ

A
)|2 |t(ξ

A
)|2, will be confined only within the 

respective well even if the wells overlap. It should be highlighted that the cross-section of 
the complete well at a long enough distance from the mask plane in the overlapping region 
becomes Lorentzian too.

Because of the independent confinements, the set of individual Lorentzian wells is 
separable. This means that the physical observable |ψ(r

A
)|

R
2    at a given point r

A
 on the D 

plane results by adding the values of the light energy or the single particles confined in 
each individual well arriving to r

A
, as expressed by Eq. (7). Furthermore, the total light 

energy or single particles recorded by the detector must equal the energies of the light 
disturbances or the single particles confined in each individual Lorentzian well (i.e., those 
that cross their vertices), as expressed by Eq. (9).

This analysis is confirmed by the graphs in figure 2e-f, where σ
A
 is wide enough to cover 

the complete array, and individual Lorentzian wells with vertices at ξ
A 
= -2a, -a, 0, a, 2a 

should be considered.
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Summarizing, the component |ψ(r
A
)|

R
2   of the physical observable |ψ(r

A
)|2   is also a 

physical observable at the D plane that allows characterizing the propagation of the light 
disturbances and the single particles in the MD stage in terms of their confinement in 
individual Lorentzian wells. These wells are mathematically formalized by the kernel 
modes Φ(ξ

A
, r

A
, z, k), independently from the nature (wave or particle) of the confined 

physical entity, so that all the Lorentzian wells have the same geometry.
This suggests that the Lorentzian wells are a fundamental geometric behavior of space 

that is related to the propagation of waves in free space and to single massive particles 
in field-free regions, which can be observed by measuring the physical observable            
|ψ(r

A
)|

R
2   . The measurement is feasible by completely removing the prepared nonlocality. 

This observable is the local component of |ψ(r
A
)|2 

 
 in the sense that it relates the wave 

disturb-ance or the single particle that crosses the mask only at the vertex of the Lorentzian 
well with its local detection at any point of the well cross-section at the D plane.

It should be emphasized that the Lorentzian wells cannot mutually modulate spatially, 
as illustrated in figure 2c-f, which means that the overlapping of wells with vertices at 
different mask openings is not a condition for interference. To produce the interference 
modulation, the term Λ(r

A
) must be added to |ψ(r

A
)|

R
2   , as expressed in Eq. (6). This relates 

the nonlocality prepared at the boundary of the MD-stage: w(ξ+, ξ-) τ(ξ+, ξ-) 
with the local 

detection of light energy or single particles at any point of the well cross-section. In this 

Figure 3. Axial sections for 0 ≤ z ≤ 20λ (λ = 4pm for single matter particles and 4μm for light waves) 
on the left column and cross-sections at z = 20λ on the right column of Λ(r

A
) for linear regular arrays 

of (a), (b) two, (c), (d) three, and (e), (f) five point-openings with a spacing of a = 3λ at the M plane 
(left extreme of the axial sections) under the boundary condition w(ξ+, ξ-) τ(ξ+, ξ-) = 1. The axes units 
are pm for single matter particles and μm for light waves.
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sense, Λ(r
A
) denotes the non-local component of |ψ(r

A
)|2 . More precisely, the prepared 

nonlocality triggers the spatial oscillations of Λ(r
A
) in the volume of the MD stage 

according to the geometry of the non-local kernel Φ(ξ+, ξ-, rA
, z, k) in Eq. (8), as illustrated 

in figure 3.
Therefore, the prepared nonlocality is the necessary and sufficient condition for 

interference because it causes the spatial modulation of the individual Lorentzian wells, 
thus determining specific distributions of confinement zones in their volumes oriented in 
space by the non-local phase α(ξ+, ξ-) + ϕ(ξ+, ξ-) (Castañeda & Matteucci, 2017, 2019, 

Figure 4. The spectrum of classes of point emitters on the left column for the Lorentzian wells in 
Figure 2(e), (f) and the geometric potential in Fig. 3 (e), (f). Axial and cross-sections (at z = 103 
λ) of spatially-structured Lorentzian wells on the middle and right columns. In (a) the dotted line 
rectangle for ξ

D 
= 0 encloses the vertices of the individual Lorentzian wells for a mask with a linear 

array of point openings with a spacing of a = 3λ while the triangle encloses the vertices of the 10 
geometric potential modes (ξ

D 
≠ 0) under strong nonlocality covering all the mask openings. Graphs 

(b) and (c) describe the complete well resulting from the overlapping of the five individual spatially-
structured wells, three of them, with vertices at ξ

A
= -2a, -a, 0, are depicted in graphs (d)-(l). The 

rectangles in the spectra of classes of point emitters in (d), (g), and (j) show the specific subset of four 
geometric potential modes that modulate the individual Lorentzian well whose vertex is enclosed in 
the rectangles. Consequently, the resulting individual spatially-structured Lorentzian wells in (e)-(l) 
exhibit different modulations.
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Castañeda et al., 2021). Consequently, the light energy and the single particles will be 
concentrated in such confinement zones, so that the interference pattern is observed at the 
cross-section on the D plane of the complete spatially-structured Lorentzian well as it is 
illustrated in figure 4.

Nevertheless, Λ(r
A
) is not directly mensurable by a squared modulus detector because 

it is not a positive-definite function and should fulfill the condition in Eq. (11) at any cross-
section of the Lorentzian well. Therefore, its only role is to confer a spatial structure to the 
wells, so that the cross-section of the resulting spatially-structured Lorentzian well at the 
D plane determines the physical observable denoted by |ψ(r

A
)|2 

 
.

It should be underlined that the non-local kernel is determined by the non-paraxial 
Green’s functions for the MD stage, which depend on the stage configuration independently 
from the physical and statistical properties of the waves or particles moving in it. In other 
words, Φ(ξ+, ξ-, rA

, z, k) should be considered as a geometric condition imposed by the 
setup configuration on the Lorentzian wells. For this reason, the integrand of Eq. (8) is 
called the “geometric potential” (Castañeda et al., 2020), whose cross-section at the D 
plane is Λ(r

A
).

It is opportune to clarify that the geometric potential differs from the quantum potential 
introduced by Bohm and Hiley (Bohm & Hiley, 1984) in that the quantum potential is 
specifically deduced from the Schrödinger equation after applying the notion of quantum 
active information coined by them, while the geometric potential is based only on the 
geometrical features of the non-paraxial Green’s functions of the Helmholtz equation.

It is worth noting that, depending on the vertex positions, the individual Lorentzian 
wells are modulated by specific subsets of geometric potential modes. This may be 
appreciated accurately by introducing an analysis tool called the spectrum of classes of 
point emitters (Castañeda, 2016). It is a dot diagram with coordinates (ξ

A
, ξ

D
) where the 

dots at positions (ξ
A
, 0) represent the vertices of the individual Lorentzian wells while 

the points at positions (ξ
A
, ξ

D 
≠ 0) represent the vertices of the geometric potential modes 

associated with each pair of points on the M plane, with the separation vector ξ
D
, and the 

midpoint between them at ξ
A
, as shown in figure 4a.

In this example, a mask with a linear array of five-point openings is under strong 
nonlocality covering the array completely, thus activating the maximal number of geometric 
potential modes, i.e., ten. However, different subsets of only four modes modulate each 
individual spatially-structured well, as shown by the spectra in (a), (g), and (j).

The vertices of three of the individual wells at ξ
A 

= -2a, -a, 0 can be appreciated in 
their axial sections near the mask at z = 0. The positive maxima of their cross-sections in the 
far field depict the main confinement zones of each individual well separated by secondary 
positive maxima that depict low confinement zones and by negatively valued zones 
forbidden for confinement. Indeed, only the positive definite zones in the cross-sections 
of the individual spatially-structured Lorentzian wells characterize the physical observable 
measurable by a squared modulus detector that describes the arrivals of the light energy or 
the single particle that entered the well at its vertex. The important phenomenological role 
of the forbidden confinement zones is discussed later.

The individual wells with vertices at ξ
A 

= a, 2a are not shown in figure 4 because 
they are in mirror symmetry with respect to the optical axis of the wells with vertices at 
ξ

A 
= -a, -2a. The overlapping of the five individual spatially-structured Lorentzian wells 

renders the complete spatially-structured Lorentzian well whose sections are shown in (b) 
and (c). The five vertices are apparent in the axial section near the mask and the cross-
section profile in the far field has the expected distributions of main confinement regions 
(the main maxima) separated by three regions of very low confinement (the secondary 
maxima). It has a discrete set of zeroth points which are the only forbidden points for 
confinement, i.e., light irradiance or single particles should not be detected at such points. 
The cross-section of the complete well at any distance z ≥ 0 is a physical observable that 
can be measured by the detector.
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Summarizing, from the point of view of the confinement principle, the free space (or 
the free-field regions delimited by the setup) is not Newtonian. Actually, it is a physical 
system whose geometric states, i.e., the spatially-structured Lorentzian wells, confine the 
light energy and the single particles. In this sense, the ordinary space acts as an external 
agent on the light and the particles so the confinement phenomenology is completely causal.

 It should be underlined that, in the case of single particles, the confinement principle 
does not contradict Heisenberg’s uncertainty principle (Feynman et al., 1965), although 
this subject is beyond this paper and, thus, is not treated here.

¿Is the prepared nonlocality a property of waves and particles?
Usually, nonlocality is described as the spatial-correlation attributes of the optical field 
called spatial coherence (Born & Wolf, 1993; Mandel & Wolf, 1995) or the quantum wave 
functions of single particles (Feynman et al., 1965) (Feynman & Hibbs, 1965). In contrast, 
in the context of the confinement principle, it has been shown that nonlocality at the M plane 
is a geometric condition prepared in the volume of the SM stage in accordance with the stage 
configuration (Castañeda et al., 2020, 2021). Indeed, by applying the same reasoning as in 
Eq. (1), the eigenfunction at each point on the mask plane can be expressed as

ψ(ξ
±
) = ∫

S
 d2 r' ψ(r

±
'         ) t(r

±
'         ) Θ(r

±
'         , ξ

±
, z', k) ,                (12)

so that Eq. (4) yields
w(ξ+, ξ-) = ∫

S
 ∫

S
 d2rA

'         d2rD
'          w(r+

'         , r'
-

       ) τ(r+
'         , r'

-
       ) Φ(r+

'         , r'
-

       , ξ+, ξ-, z', k)

        

 (13)

for the prepared nonlocality at the M plane, with τ(r+
'         , r'

-
       ) = t(r+

'            ) t*(r'
-

       ) as the non-local and 
usually deterministic complex transmission of the S plane, and

Φ(r+
'         , r'

-
       , ξ+, ξ-, z', k) = Θ(r+

'         , ξ+, z', k) Θ*(r'
-

       , ξ-, z', k)

as the non-local kernel defined for the volume of the SM-stage, which has the Hermitic 
symmetry

Φ(r+
'         , r'

-
       , ξ+, ξ-, z', k) = Φ*(r'

-
       , r+

'         , ξ-, ξ+, z', k).

Therefore, the non-local kernel Φ(r+
'         , r'

-
       , ξ+, ξ-, z', k) is a geometric, time-independent, 

and deterministic function defined in the SM stage connecting the pairs of points (r+
'         , 

r'
-

      ) at the S plane with the pairs of points (ξ+, ξ-) at the M plane. Such a connection is 
established in accordance with the stage configuration that determines the corresponding 
Green’s functions and is independent from the non-local product w(r+

'         , r'
-

       ) τ(r+
'         , r'

-
       ) at the 

S plane. The explicit mathematical form of Φ(r+
'         , r'

-
       , ξ+, ξ-, z', k) is deduced in detail by 

Castañeda & Matteucci (2019).
Consequently, the overlapping of the kernel modes in Eq. (13), weighted by the non-

local product w(r+
'         , r'

-
       ) τ(r+

'         , r'
-

       ) at the S plane, determines a geometrical structure in the SM 
stage whose cross-section at the M plane is the nonlocality function there.

It is worth noting that the nonlocality function w(r+
'        , r'

-
     ) = ψ(r

±
'        ) ψ*(r'

-
 ) at the S plane 

involves the spatial correlation of the effective source as a boundary condition for the SM 
stage, i.e., its physical and statistical emission properties which, in turn, yield the statistical 
appearance of the interference pattern buildup at the D plane. The local component of 
this nonlocality function, w(rA

'        , rA
'       ) = |ψ(rA

'        )|2 for rD
'        = 0, denotes the physical observable 

representing the light irradiance at each point of the effective source, as well as the quantum 
probability for particle emission at such points.

Equation (13) points out that the non-local product w(r+
'       , r'

-
     ) τ(r+

'         , r'
-

     ) behaves only as 
a modal filter on the non-local kernel, thus selecting the kernel modes for the pairs of 
points (r+

'         , r'
-

       ) for which w(r+
'         , r'

-
       ) τ(r+

'         , r'
-

       )
 
≠ 0. Moreover, it also indicates that the spatial 

correlation of the effective source is not a condition to prepare nonlocality at the mask 
plane. Indeed, for complete uncorrelated sources, the nonlocality function reduces to its 
local component and, therefore, the prepared nonlocality at the mask plane becomes

w(ξ+, ξ-) = ∫
S 
d2 r' |ψ(rA

'          )|2 |t(rA
'        )|2 Φ(rA

'        , ξ+, ξ-, z', k),          (14)



912

Castañeda R
46(181):902-919, octubre-diciembre de 2022. doi: https://doi.org/10.18257/raccefyn.1695

Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 

with 0 ≤ |t(rA
'         )|2 ≤ 1 being the transmittance of the S plane. In optics, the ensemble average 

of Eq. (14) is known as the (non-paraxial) Van Cittert-Zernike theorem (Mandel & Wolf, 
1995) and is conventionally interpreted as the prediction of the spatial coherence gain of 
an incoherent optical field due to its propagation in free space. In quantum mechanics, this 
expression seems to refer to a calculation in the Hilbert space instead of a phenomenon 
in ordinary space. In contrast with optics, the phenomenological quantum description of 
the particle behavior in ordinary space is significantly limited, and, to some extent, exotic 
assumptions are assumed for justifying the accuracy of the predictions of experimental 
outcomes calculated in Hilbert space. Specifically, it is usually assumed that the nonlocality 
function w(ξ+, ξ-) calculated in Eq. (14) indicates the delocalization of the particle when it 
arrives at the mask in the ordinary space, regardless of the fact that, in accordance with the 
local boundary condition |ψ(rA

'        )|2 |t(rA
'          )|2 and the observable |ψ(rA)|2 to be measured by the 

detector, the particle is considered a local entity at both its emission point on the S plane 
and its arrival point on the D plane.

The standard interpretation of the Van Cittert-Zernike theorem in optics, as well as the 
assumption of delocalization of the particle representation in quantum mechanics, have 
the peculiarity that they are non-causal hypotheses in the sense that they assume changes 
in the physical attributes of the optical field and the single particles without the action of a 
physical cause (understanding the term “cause” as an external agent).

However, in the framework of the proposed confinement principle, a unique causal 
interpretation of Eq. (14) in ordinary space can be formulated to describe in the same way 
the preparation of nonlocality at the mask for light and single particles. Let us consider the 
single particle interference where the effective source is completely uncorrelated and the 
nonlocality preparation at the M plane is as described in Eq. (14). If the effective source is 
an ideal point source, with rA

'           = r0
'           being the emission point, then |ψ(r0

'         )|2 |t(r0
'          )|2 = 1 equals 

to null for rA
'           ≠ r0

'         , and Eq. (14) reduces to
w(ξ+, ξ-) = Φ(r0

'         , ξ+, ξ-, z', k).        (15)

It has been shown that the kernel mode in Eq. (15) has a conical shape, and is a 
geometrical and deterministic function in the SM stage called the correlation cone 
(Castañeda et al., 2020). Its vertex is placed at the emission point, its basis covers a 
region of pairs of points (ξ+, ξ-) on the mask and exhibits a Lorentzian cross-section at 
any distance from the S plane (Figure 5a, b). It is apparent in Eq. (15) that the geometric 
attributes of the correlation cone are due to the non-paraxial Green’s functions for the SM 
stage and are independent of the physical and statistical attributes of the effective source.

It is worth noting that the physical observable describing the arrival of the single 
particle at a given point of the M plane is the quantum probability

w(ξA, ξA) = |ψA (ξ)|2 = Φ(r0
'         , ξA, z', k),      (16)

i.e., the local component of the prepared nonlocality. The kernel mode in Eq. (16) is 
a Lorentzian well with a vertex at the emission point whose geometrical shape is like 
that shown in figure 2a, b. Therefore, we can conclude that the correlation cone is a 
geometric deterministic condition established in the volume of the SM stage determined 
by its configuration. Its cross-section at the M plane gives the prepared nonlocality there 
independently of the single particle arriving at that plane, so once a single particle is locally 
emitted at the source plane, its movement towards the M plane (no matter the path it follows) 
is confined in the Lorentzian well in Eq. (16) and is also contained in the correlation cone in 
Eq. (15). Consequently, it arrives locally to any point in the cross-section of the Lorentzian 
well at the M plane, which is non-locally linked only with the other points enclosed by the 
cross-section of the correlation cone there. Given such specifically prepared non-local links, 
the corresponding geometric potential modes are activated in the MD stage. Thus, if a mask 
opening is placed at the arrival point, the geometric potential modes spatially modulate the 
individual Lorentzian well in the MD stage with the vertex at the mask opening. After crossing 
it, the particle movement toward the detector will be confined in such a spatially-structured 
Lorentzian well, and, therefore, the particle delocalization hypothesis is unnecessary.
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An extended effective source is composed of a set of emission points with a quantum 
probability distribution that depends on the emission properties of the source. Each 
emission point is the vertex of an individual Lorentzian well and of a correlation cone, 
both in the SM stage. According to Eq. (14), the prepared nonlocality at the M plane results 
from the overlapping of all the correlation cones, no matter that only one emission point 
is active in each individual realization. Therefore, the size of the prepared nonlocality 
support at the M plane is reduced as the effective source size increases, as illustrated by the 
examples in figure 5 c-f. Because of this reduction in the size of the prepared nonlocality 
support, modes of the geometric potential in the MD stage are filtered out, so that the 
confinement zones in this stage will not be strongly modulated and contrasted. This was 
evident in the experimental results of interference with single electrons (Matteucci et al., 
2013) as a loss of the pattern visibility with single fullerene molecules (Nairz et al., 2003) 
with a cosine-like shape in the interference pattern, although a grating was attached at the 

Figure 5. Correlation cones in the SM stage for spatially incoherent optical sources or uncorrelated 
single massive particle sources attached at the S plane. Axial sections for 0 ≤ z ≤ 10λ (λ = 4pm for 
single matter particles and 4μm for light waves) on the left column and cross-sections at z = 10λ 
on the right column for (a), (b) a point source, (c), (d) a source with two emission points, and (e), 
(f) an extended source with a regular array of five equivalent emission points with a spacing of a = 
λ/2. (ξ

D
, η

D
) are the Cartesian coordinates of the separation vectors at the M plane. The nonlocality 

support is mainly determined by the central main maximum of the profiles and is centred in all cases 
at ξ

A
 =0. The axes units are pm for single matter particles and μm for light waves.
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M plane, and with other molecules (Juffmann et al., 2012) as a strong loss of contrast in 
the interference pattern. The analysis of these results in the framework of the current model 
was reported by Castañeda & Matteucci (2017).

This description is also valid for spatially incoherent optical fields, although all the 
emission points of the extended effective source can be continuously and simultaneously 
active, as fairly established by Wolf in his spatial coherence theory (Born & Wolf, 1993; 
Mandel & Wolf, 1995). Therefore, the Lorentzian well is completely filled by the source 
emissions, so that |ψ(rA

'        ) |2 and  |ψ(ξA)|2 describe the irradiance distributions over the effec-
tive source and the mask, respectively.

This analysis emphasizes that the prepared nonlocality at the M plane seems not to 
be a physical or statistical property of the light or the single particles, but a condition 
established by the setup configuration. The influence of the spatial correlation properties 
of the effective source on the nonlocality preparation restricts to specifying and weighing 
the set of the non-local kernel modes in the integrand of Eq. (13).

Additionally, the local component of Eq. (13) specifies the physical observable 
w(ξA, ξA) = |ψ(ξA)|2 that describes the prepared distribution of the light irradiance or the 
single particles arriving at the M plane. It is the cross-section of the spatially-structured 
Lorentzian wells overlapped in the SM stage. The nonlocality properties of the effective 
source denoted by w(r+

'        , r'
-

       ) activate the geometric potential that modulates the wells in    
the same way as in the MD stage with the prepared nonlocality at the mask. By following 
the same reasoning as in Eq. (6) and setting ξ

D 
= 0, Eq. (13) yields |ψ(ξA)|2 = |ψ(ξA)|

R
2    + 

Λ(ξA), with
|ψ(ξA)|

R
2     = ∫

S 
d2rA

'           |ψ(rA
'          )|2 |t(rA

'          )|2 Φ(rA
'          , ξA, z', k)

and

Λ(ξA) = 2  ∫
S  

∫
S  

d2rA
'           d2rD

'           |w(r+
'          , r'

-
       )| |τ(r+

'          , r'
-

       )| 

× Re [Φ(r+
'          , r'

-
       , ξA, z', k) exp[i α(r+

'          , r'
-

       ) + i ϕ(r+
'          , r'

-
       )] ],

whose phenomenological meanings in the context of the confinement principle for the 
SM stage are similar to those of the corresponding expressions for the MD stage given 
respectively by Eqs. (7) and (8).

Summarizing, the nonlocality function is geometrically prepared at the mask plane, 
i.e., its shape and size are closely related to the kernel modes, which are determined by 
the non-paraxial Green’s functions for the SM stage, independently from the physical and 
statistical emission properties of the effective source. Nevertheless, such source features 
confer a statistical appearance to the recording of single particle arrivals and light irradiance 
by the detector without altering the geometry of the correlation cones and the spatially-
structured confinement in the wells. This phenomenology in ordinary space clearly differs 
from the standard formalisms that describe nonlocality features in terms of the spatial 
correlation functions attributed to the light in free space or the representation of the particle 
beams in the Hilbert space.

¿Is the confinement entangled?
Since the notion of entanglement of quantum states was pointed out as a paradox by Einstein, 
Podolsky, and Rosen in a celebrated paper (Einstein et al., 1935), it has motivated strong 
discussions in different contexts of physics. For instance, it inspired the formulation of a 
hidden-variable theory (Bohm, 1952 a, b), a theorem to verify the existence of entanglement 
from experimental data (Bell, 1964), experiments to demonstrate its existence (Bohm 
& Aharonov, 1957; Freedman & Clauser, 1972; Aspect et al., 1982; Aspect, 2015), 
and contemporary technological perspectives (Paneru et al., 2020) including quantum 
computation, teleportation, quantum encryption, and telecommunications. In all these 
topics, as well as in the multiple scenarios in which different types of entanglement have 
been identified (Paneru et al., 2020), the notion of entanglement denotes non-separable 
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quantum states of physical systems, such as photons and massive particles, for which the 
measurement on one state affects the other states without interaction between the systems 
(Bhaumik, 2018; Paneru et al., 2020), a behavior that Einstein called the “spooky action 
at a distance” (Born, 1971).

From the perspective of the proposed confinement principle for interference, the 
spatially-structured Lorentzian wells have been characterized as the behavior of free space 
related to (but independent from) the propagation of waves and massive particles between 
specific planes. More precisely, the Lorentzian wells are the behavior of ordinary space 
in the absence of prepared nonlocality at the input plane so the geometric potential is 
not activated. In the presence of prepared nonlocality, the activated geometric potential 
modulates the Lorentzian wells, thus establishing the spatially-structured wells.

Therefore, free space is regarded as a physical system that is able to confine the 
propagation of light energy as well as of single particles in spatially-structured wells. 
Furthermore, such wells characterize the geometrical states of free space whose attributes 
can be controlled by means of the prepared nonlocality. Consequently, a mask establishes a 
set of free-space geometrical states in the volume of the MD stage, each one corresponding 
to an individual Lorentzian well which is spatially structured by the subset of geometric 
potential modes activated by the prepared nonlocality. A peculiar feature of these states 
seems to approach the entanglement scenarios.

Let us consider the individual spatially-structured Lorentzian wells under strong 
nonlocality. As shown in section 2, each well must have forbidden regions (Figure 4) that 
reduce the confinement in the other wells, even to null at specific points. Thus, independent 
confinement regions are established in the complete spatially-structured well whose cross-
section at the D plane gives a highly contrasted interference pattern. In other words, because 
of the spatial distribution of the forbidden regions in the individual wells, the set of free-
space states is not separable, and the confinement in each one is affected by the other ones.

This can be clearly appreciated by considering the Young interference with a double 
pinhole mask with a separation vector a. Each individual Lorentzian well and the 
corresponding geometric potential are given, respectively, by the integrands of Eqs. (7) 
and (8), which can be denoted as |Γ(±a/2, r

A
, z, k)|2 and

(1/2)(Γ(a/2, r
A
, z, k) Γ*(-a/2, r

A
, z, k) + Γ*(a/2, r

A
, z, k) Γ(-a/2, r

A
, z, k),

with
Γ(±a/2, r

A
, z, k) = ψ(±a/2) t(±a/2) Θ(±a/2, r

A
, z, k).

So, the cross-section of each individual spatially-structured Lorentzian well at the D 
plane is given by

L(±a/2, r
A
) = |Γ(±a/2, r

A
, z, k)|2

                              + (1/2) (Γ(a/2, r
A
, z, k) Γ*(-a/2, r

A
, z, k)                         (17)

+ Γ*(a/2, r
A
, z, k) Γ(-a/2, r

A
, z, k)).

Equation (17) has remarkable mathematical and physical features. It is a non-factorable 
expression that is measurable at the points r

A
 on the D plane and fulfills the condition  

L(±a/2, r
A
) ≥ 0, in the sense that a squared modulus detector can record the confined 

light energy or the single particles at such points. The points r
A
 for which L(±a/2, r

A
) < 0 

determines forbidden regions and the squared modulus detector cannot record light energy 
or single particles there. So, the “measurability” of L(±a/2, r

A
) is ensured by the condition

|Γ(±a/2, r
A
, z, k)|2  ≥ 1/2 |Γ(a/2, r

A
, z, k) Γ*(-a/2, r

A
, z, k)

                                   + Γ*(a/2, r
A
, z, k) Γ(-a/2, r

A
, z, k)|                              (18)

with
(Γ(a/2, r

A
, z, k) Γ*(-a/2, r

A
, z, k) + Γ*(a/2, r

A
, z, k) Γ(-a/2, r

A
, z, k)) < 0

Nevertheless, the physical observable

                                 |ψ(r
A
)|2 = L(a/2, r

A
) + L(-a/2, r

A
) ≥ 0                            (19)
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is always measurable by a squared modulus detector. This indicates that the two individual 
spatially-structured Lorentzian wells L(±a/2, r

A
) are non-separable to ensure the 

measurement of the interference pattern at the D plane and, additionally, |ψ(r
A
)|2 < L(±a/2, 

r
A
)
 
for L(∓a/2, r

A
) < 0. This means that the forbidden regions of everyone well overlap the 

confinement regions of the other well. Consequently, the negative values of the forbidden 
zones of every well reduce the confinement in the other well.

Therefore, a peculiar behavior can be predicted. Let us start with a weak enough 
prepared nonlocality at the M plane, so that the forbidden zones are removed in the 
individual spatially-structured wells and L(±a/2, r

A
) > 0. Under this condition, the two 

wells are separable in the sense that |ψ(r
A
)|2 can be determined by separated positive definite 

contributions measured at everyone well. The predicted outcome is a low contrasted 
interference pattern at the D plane for which |ψ(r

A
)|2 > L(±a/2, r

A
). Now, let us increase 

the prepared nonlocality at the M plane. The geometry of the geometric potential mode 
remains invariant, but at the time when the forbidden zones appear in one of the individual 
wells, the confinement in the other well is reduced at the same place of the forbidden 
zone and in the same amount. This simultaneous effect in two different spatially-structured 
wells is caused by an action applied at a distant place, actually at the S plane of the SM 
stage, where the prepared nonlocality at the M plane is controlled. Furthermore, because 
of the mirror symmetry of the individual spatially-structured Lorentzian wells, the same 
reduction in confinement occurs symmetrically in both wells because of the appearance 
of symmetrical forbidden zones in them induced by the same geometric potential mode. 
Thus, the measurement of the reduced confined light energy or the single particles at a 
given point in one of the individual wells should reveal the simultaneous reduction of the 
confined light energy or the single particles by the same amount at the symmetric point in 
the other individual well.

This behavior of the Young interference is illustrated in figure 6a, c. The dotted line 
profiles are the cross-sections of the individual spatially-structured Lorentzian wells given 
by Eq. (17), and the continuous line profile results from their overlapping, as denoted 
in Eq. (19). Near the mask, the forbidden zones in both individual wells are denoted by 
the negative values of their profiles. It is worth noting that the confinement of each well 

Figure 6. Spatial entanglement in Young interference. The cross-sections of the individual spatially-
structured Lorentzian wells and their overlapping are shown (a) near the M plane and (c) in the far 
field. Removing the spatial entanglement by weakening the prepared nonlocality (b) near the M 
plane and (d) in the far field. The units are arbitrary.
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is reduced in the segment coinciding with the forbidden zones of the other well, so that 
|ψ(r

A
)|2 takes on values between the individual profiles. In the far field, the forbidden 

zones reduce to null points of the profiles at the same positions on the D plane. It should 
be emphasized that this crucial feature of the geometric states of the space has not been 
explicitly described in the standard interference formalisms.

The forbidden zones can be removed by weakening the nonlocality suitably, as shown 
in figure 6 b, d. Consequently, the mutual influence on the confinement in each individual 
well disappears and the geometric states of the free space become separable, i.e., the 
confinement in each well only depends on its own spatial structure.

The analysis above suggests that a new type of entanglement involves the two 
spatially-structured Lorentzian wells that we call spatial entanglement. Such entanglement 
is controlled from outside the MD stage and manifests as the symmetrical reduction of the 
confinement in each well because of the forbidden zones in the other well. It should be 
noted that spatial entanglement is not a condition to build-up interference, but it is required 
for high-contrasted interference.

Physical observables describing the exact predictions of the confinement in the 
individual spatially-entangled wells can be obtained by simply adjusting the confinement 
zones in accordance with the forbidden zones as illustrated in figure 7. The predictions 
(continuous-line profiles) are compared with the original profiles of L(±a/2, r

A
) (dotted-line 

profiles). Near the mask in (a) and (b), the forbidden zones of each L(±a/2, r
A
) are set to null 

in the prediction profile, and their negative values are added to the confinement zones of 
the other well, so that the predicted values there become smaller than the profile values of 
L(±a/2, r

A
). Outside the forbidden zones, the values of L(±a/2, r

A
) predict the confinement 

in the well. This coincidence is complete in the far field, (c) and (d), where the forbidden 
zones of the individual wells reduce to only the null points of their cross-sections.

The measurement of the predicted confinement in spatially-entangled wells, as those 
illustrated in figure 7, should be regarded as a strong experimental challenge, not only 
because of the requirement of non-paraxial technology but also (and more importantly) 
because it involves measurements on the cross-section of each individual spatially-
structured Lorentzian well. To make it possible, an experimental procedure different 
from the quantum eraser (Scully & Zubairy, 1997) should be implemented as this 
experiment precludes the simultaneous determination of the mask opening crossed by a 

Figure 7. Effective confinement predictions obtained by modifying the individual spatially-entangled 
wells in accordance with the distribution of the forbidden zones (a), (b) near the M plane, and (c), (d) 
in the far field. The units are arbitrary.
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particle, specifically a photon, and the detection of the interference pattern by the detector. 
Therefore, the quantum eraser setups are not suitable to verify the predictions depicted in 
figure 7, which renders this measurement extremely challenging.

Summary and conclusions
The phenomenology based on the novel principle of confinement in spatially-structured 
Lorentzian wells was discussed in detail. Its main advantage is to offer a unified and causal 
description of interference with classical waves and single massive particles in ordinary 
space. Instead of characterizing interference with waves and single particles by conferring 
them certain physical features, we assume the free space (or the field-free regions 
delimited by a setup) as a physical system with geometrical states capable of confining the 
light energy and the single particles in volumetric spatial structures whose cross-sections 
determine the interference patterns.

In contrast with the standard formalisms, this model accounts for individual 
experimental realizations where the emission, the crossing through the mask, and the 
detection are local events for both waves and particles. Nevertheless, a peculiar geometric 
feature of free space, called nonlocality, appears as the cause of interference. Instead of 
an attribute of the waves or the particles, nonlocality is prepared by the configuration of 
the setup. Furthermore, by strongly prepared nonlocality, the free-space geometrical states 
seem to become spatially entangled, i.e., the forbidden zones of each individual spatially-
structured Lorentzian well affect the confinement in the other individual wells, thus 
ensuring the build-up of high-contrasted interference patterns. The spatial entanglement is 
removed by suitably weakening the prepared nonlocality.

It should be emphasized that this model is rigorously based on the solution of the 
Helmholtz equation (i.e., the spatial component of both the classical wave equation for 
free space and the Schrödinger equation for field-free regions) using Green’s theorem, and 
relates Green’s function to the geometric states of free space. It seems to be the starting 
point of its departure from the standard classical and quantum formalisms of interference 
without affecting its accuracy in predicting experimental outcomes.

So, in the phenomenology of the confinement in spatially-structured Lorentzian wells, 
duality hypotheses like particle delocalization and self-interference are unnecessary. 
A further important feature of the proposed model is the simultaneous presence of the 
Lorentzian wells and the correlation cones in the volume of the preparation stage of the 
setup. Following the same reasoning, it can also be established in the measurement stage. It 
should be underlined that this feature questions the requirement of wave function “collapse” 
as the local measurement of the arrival of a single particle at the detector is performed. 
Indeed, squared modulus detectors perform local measurements only on the cross-section 
of the Lorentzian well without affecting the nonlocality in the detection area and demand 
that the eigenfunction does not nullify when the local measurement is performed.

Acknowledgements
The author is in debt with Giorgio Matteucci (Universitá degli Studi di Bologna, Italy), 
Jaime Moreno, and Julián Laverde (Universidad Nacional de Colombia Sede Medellín) 
for discussing this paper.

Conflicts of interest
The author declares that he does not have any conflict of interest.

References
Aspect, A., Dalibard, J., Roger, G. (1982) Experimental text of Bell’s inequalities using time-

varying analyzers. Physical Review, 49, 1804-1807.
Aspect, A. (2015) Closing the Door on Einstein and Bohr’s Quantum Debate. Physics, 8, 123.
Arfken, G. (1970) Mathematical Methods for Physicists (2nd ed. New York: Academic Press).



919

Confinement and spatial entanglement in interference
46(181):902-919, octubre-diciembre de 2022. doi: https://doi.org/10.18257/raccefyn.1695
Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 

Bach, R., Pope, D., Sy-Hwang L., Batelaan, H. (2013) Controlled double-slit electron diffraction. 
New Journal of Physics 15, 033018.

Bhaumik, M.L. (2018) How Does Nature Accomplish Spooky Action at a Distance? Quanta, 7, 
111-117.

Bell, J.S. (1964) On the Einstein, Podolsky and Rosen paradox. Physics, 1, 195-200.
Bohm, D. (1952) A suggested interpretation of the quantum theory in terms of “hidden” variables. I. 

Physical Reviews, 85, 166-179.
Bohm, D. (1952) A suggested interpretation of the quantum theory in terms of “hidden” variables. 

II. Physical Reviews, 85, 180-193.
Bohm, D., Aharonov, Y. (1957) Discussion of experimental proof for the paradox of Einstein, Rosen 

and Podolsky. Physical Reviews, 108, 1070-1076.
Bohm, D., Hiley, B.J. (1984). Measurement understood through the quantum potential approach. 

Foundations of Physics, 14, 255-274.
Born, M. (ed.) (1971). The Born Einstein Letters 221 (London: Macmillan).
Born, M., Wolf, E. (1993) Principles of Optics (6th ed.). Oxford: Pergamon Press. 
Castañeda, R. (2016). Spectrum of classes of point emitters of electromagnetic wave fields. Journal 

Optical Society of America, A 33, 1769-1776.
Castañeda, R., Matteucci, G. (2017). New physical principle for interference of light and material 

particles. Hawkes, P.H. editor, Advances in Imaging and Electron Physics, Vol. 204, London: 
Elesevier – Academic Press, Ch. 1. 

Castañeda, R., Matteucci, G. (2019). Geometric model for interference and diffraction with waves 
and particles. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 
43, 177-192.

Castañeda, R., Matteucci, G., Capelli, R. (2016). Interference of Light and of Material Particles: A 
Departure from the Superposition Principle. Hawkes, P.H. editor, Advances in Imaging and 
Electron Physics, Vol. 197, Burlington: Academic Press, p. 1-43.

Castañeda, R., Matteucci, G., Capelli, R. (2016). Quantum Interference without Wave-Particle 
Duality. Journal of Modern Physics, 7, 375-389.

Castañeda R., Moreno, J., Colorado, D., Laverde, J. (2020). 3D non-paraxial kernel for two-point 
correlation modelling in optical and quantum interference at the micro and nano- scales. 
Physica Scripta, 95, 065502.

Castañeda, R., Bedoya, P., Matteucci, G. (2021). Non-locality and geometric potential provide the 
phenomenology of the double-hole single massive particle and light interference. Physica 
Scripta, 96, 125036.

Einstein, A., Podolsky, B., Rosen, N. (1935). Can quantum mechanical description of physical 
reality be considered complete? Physical Review, 47, 777.

Feynman, R., Leighton, R., Sands, M. (1965). The Feynman Lectures on Physics vol. 3 (Menlo 
Park: Addison–Wesley).

Feynman, R., Hibbs, A. (1965). Quantum Mechanics and Path Integrals (New York: McGraw-Hill). 
Freedman, S.J., Clauser, J.F. (1972). Experimental test of local hidden-variable theories. Physical 

Review, 28, 938-941.
Juffmann, T., Milic, A., Muellneritsch, M., Asenbaum, P., Tsukernik, A., Tuexen, J., Arndt, M. 

(2012). Real-time single-molecule imaging of quantum interference. Nature Nanotechnology, 
7,  297-300.

Mandel, L., Wolf, E. (1995). Optical Coherence and Quantum Optics (Cambridge: Cambridge 
University Press). 

Matteucci, G. (2011). On the presentation of wave phenomena of electrons with the Young–Feynman 
experiment. European Journal of Physics, 32, 733-738.

Matteucci, G., Pezzi, M., Pozzi, G., Alberghi, G., Giorgi F., Gabrielli, A., Gazzadi, G. (2013). Build-up 
of interference patterns with single electrons. European Journal of Physics, 34, 511-517.

Nairz, O., Arndt, M., Zeilinger, A. (2003). Quantum interference experiments with large molecules. 
American Journal of Physics, 71, 319-325.

Tavabi, A.H., Boothroyd, C.B., Yücelen, E., Frabboni, S., Gazzadi, G.C., Dunin-Borkowski, 
R.E., Pozzi, G. (2019). The Young-Feynman controlled double-slit electron interference 
experiment. Scientific Reports, 9,10458.

Paneru, D., Cohen, E., Fickler, R., Boyd, R.W., Karimi, E. (2020). Entanglement: quantum or 
classical? Report Progress in Physics, 83, 064001.

Scully, M.O., Zubairy, S. (1997). Quantum Optics (Cambridge: Cambridge University Press).


	_Hlk118197356
	_Hlk118198549

