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Resumen
El análisis de la trayectoria académica es de suma importancia para los administradores de
Programas de estudio, ya que les permite identificar áreas de oportunidad para la mejora
del Programa Académico. En este trabajo analizamos la trayectoria académica de un grupo
de estudiantes matriculados en un Programa Universitario de Matemáticas. Para ello, pro-
ponemos un modelo estocástico, el cual se define en términos de una cadena de Markov
progresiva con dos estados absorbentes. La teorı́a inferencial presentada en este artı́culo
aborda la definición de una muestra aleatoria para una cadena de Markov, la construcción
de la función de verosimilitud respectiva y la estimación de los parámetros del modelo.
Mediante estos estimadores y el método delta, se derivan los intervalos de confianza para
el tiempo medio de absorción, el tiempo medio de salida de un estado y la probabilidad de
absorción en un estado, estas cantidades corresponden al tiempo esperado en que un estu-
diante concluye o abandona el Programa, tiempo de permanencia esperado en el semestre y
la probabilidad de que un estudiante termine o abandone el Programa, respectivamente.

Palabras clave: Modelo de cadena de Markov; estimación por máxima verosimilitud;
método delta; matriz fundamental; estimación por intervalo; trayectoria académica.

Abstract
The analysis of the academic trajectory is of the utmost importance for Scholar Program ad-
ministrators, since it allows them to identify areas of opportunity for the Academic Program
improvement. In this paper, we analyzed academic trajectory of a group students enrolled at
a University Mathematics Program. To that aim, we utilize a stochastic process for modeling
the academic trajectory. The model is defined in terms of a progressive Markov chain with
two absorbing states. The inferential theory presented in this paper deals with the definition
of a random sample for a Markov chain, the construction of the likelihood function and the
estimation of the Markov chain parameters. Using these estimates and delta method, con-
fidence intervals are calculated for the mean absorption time, the mean exit time of a state
and the absorption probability into a state, these quantities correspond to expected time a
student either concludes or drops out of the Program; the expected sojourn time in academic
term and the probability a student either concludes or drops out of the Program, respectively.
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Introduction
Stochastic processes usually model random phenomena evolving over time. A stochas-
tic process is a collection of random variables with a certain dependency structure be-
tween them. Among the most important stochastic processes are Markov chains, whose
dependency structure can be characterized by the Markov property. Roughly speaking, the
Markov property says that the future given the present and the past depends only on the
present and not on the past at all. This property, also known as the memoryless property,
allows to establishing simple results for the calculation of probabilities and other quantities
of interest, as well as for their interpretation in the mathematical modeling of random phe-
nomena where Markov chains are used. Communications networks, Alzheimer’s disease,
DNA sequence analysis, and Education are some examples where Markov chain models
have been used in recent decades (see (Perera et al., 2019), (Yu et al., 2013), (Zakar-
czemny & Zajecka, 2022), (Muhammad, Falgore, & Sani, 2019), (Wang et al., 2021)
and references therein).

Absorbing Markov chains are the most known and most interesting examples of Markov
chain theory. A Markov chain is absorbing if there is at least a state such that when the
Markov chain reaches it, it stays there forever. When this occurs, the Markov chain is said
to be absorbed. For this type of Markov chain, we are interested in calculating the absorption
probabilities and the mean absorption times. In other words, the absorbing Markov chain
theory allows us to answer the questions: What is the probability that the Markov chain
will be absorbed in one state? What is the mean time it takes for the Markov chain to be
absorbed? The answers to the questions are achieved by calculating the fundamental matrix,
which is obtained from the transition probability matrix (see (Kemeny & Snell, 1976)).
Therefore, statistical procedures are necessary to estimate the transition probability matrix
for absorbing Markov chain models and thus determine the aforementioned quantities.

In their paper, Anderson and Goodman (Anderson & Goodman, 1957) establish a trea-
tise on statistical inference for Markov chains. This work includes point estimation for a
transition probability matrix, hypothesis tests for Markov homogeneity, asymptotic theory
for point estimators, among others. However, explicit results related to absorption proba-
bilities and mean absorption times for absorbing Markov chains have not been established
in this paper. On the other hand, although the point estimation of the fundamental matrix
was not studied in that paper, with the help of invariance property of maximum likelihood
estimators, we can obtain a point estimator for this matrix. Similarly, the theory developed
there does not allow the construction of confidence intervals for the absorption probabilities
and the mean absorption times, however, with the help of delta method, in this paper we
calculate asymptotic confidence intervals for these and other quantities, which are transfor-
mations of the fundamental matrix. The asymptotic confidence intervals are used to analyze
the academic progress of students in a University Mathematics Program.

The purpose of this paper is to analyze academic trajectories using an absorbing Markov
chain. It is important to mention this is not the first time that an analysis of this type has
been done. There are works in which school trajectories analysis are carried out considering
an absorbing Markov chain ((Husna Yahaya, Khairun & Hasan, Husna, 2021), (Muham-
mad, Falgore, & Sani, 2019); (Wang et al., 2021)). In all these works, the estimation of
transition probabilities lies in counting the number of transitions from a state to another in a
single unit of time. In our study, we consider an observation period and although we obtain
an equivalent way to estimate transition probabilities, our initial approach is different and
allows us to introduce the concept of a random sample for Markov chains. Furthermore,

2

Analysis of academic trajectories of higher education
students by means of an absorbing Markov chain
Análisis de las trayectorias académicas de estudiantes de
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since point estimation is sometimes not sufficient to obtain conclusions on the true value
of the population parameter, confidence interval estimation is preferable, since it provides
a range of values that is likely to contain it. For this reason, in our work, as was men-
tioned before; we include the calculation of confidence intervals, which are used to analyze
academic trajectories. Thus, our contribution lies in the application of absorbing Markov
chains with confidence intervals to the case study. Finally, with the help of joint distribution
of the absorbing time and the state where Markov chain is absorbed (Theorem 1 below), we
determine the academic term in which the student is most probably either to dropping out
or completing the Program.

The paper is organized as follows. Section 2 introduces the main elements of Markov chain
theory that are used throughout the paper. In this section, we calculate the joint distribu-
tion of the absorbing time and the state where the Markov chain is absorbed. In Section 3,
statistical tools for absorbing Markov chain are presented and asymptotic confidence inter-
vals are obtained. In the same section, the statistical analysis of the academic progress of
undergraduate students from a University mathematics Program is given using the theory
developed in the previous sections.

Methodology
In this section, we present the main definitions and notations used in this paper. In the
first part, we give a brief introduction to discrete time Markov chains and we present the
quantities used in the application section. For a more in-depth study on the topic see (Dur-
rett, 2016), (Norris, 1998), (Pinsky & Karlin, 2011). In the second part we introduce the
progressive Markov chains.

Markov chains
Let S ⊂Z. We write X = {Xn,n ≥ 0} to denote the sequence of random variables X0,X1, . . .,
which are defined on the same probability space (Ω,F ,P). This sequence is called a
stochastic process and the ones that are studied in this paper are the so-called Markov chains,
which are defined below.

Definition 1 A stochastic process X = {Xn,n ≥ 0} with state space S is called a Markov
chain if satisfies the following: for any n ≥ 1, i, j, i0, . . . , in−1 ∈ S,

P(Xn+1 = j | Xn = i,Xn−1 = in−1, . . . ,X0 = i0) = P(Xn+1 = j | Xn = i). (1)

The property given in (1) is called the Markov property, which is generally interpreted as
a conditional memoryless property. If the right-hand side in (1) does not depends of n, the
Markov chain is said to be time-homogeneous or simply homogeneous. In this paper we
only consider homogeneous Markov chains. Furthermore, although most of the results and
definitions presented in this section are valid for Markov chains with a general state space,
we will suppose that the state space S is finite and we will write S = {1,2, . . . ,s}.

For m ≥ 0, we define the m-step probability transition as

p(m)
i j = P(Xn+m = j | Xn = i) = P(Xm = j | X0 = i),

where the second equality follows from homogeneity of the Markov chain. The m-step
probability transition is the probability of moving from state i to state j in m steps or m
units of time. When m = 0, we write p(0)i j = δi j, the Kronecker delta, which is defined as 1

whenever i = j and 0 otherwise. We also note p(1)i j = pi j.
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The transition probability matrix P, also called stochastic matrix, is a matrix whose elements
are the one-step transition probabilities of the Markov chain X = {Xn,n ≥ 0}. To be precise

P =




p11 p12 p13 · · · p1s
p21 p22 p23 · · · p2s
p31 p32 p33 · · · p3s
...

...
... · · ·

...
ps1 ps2 ps3 · · · pss



,

where

1. 0 ≤ pi j ≤ 1, for all i, j ∈ S.

2.
s

∑
j=1

pi j = 1, for all i ∈ S.

Another important element of the Markov chain theory is the initial distribution, which is
the probability distribution of the random variable X0. An important fact is the probabilistic
behaviour of a Markov chain is completely determined by its transition probability matrix
and its initial distribution. To be precise, for any n ≥ 1, i0, i1, . . . , in ∈ S:

P(X0 = i0,X1 = i1, . . . ,Xn = in) = pi0 pi0i1 · · · pin−1in ,

where pi0 = P(X0 = i).

The m-step transition probabilities satisfy the Chapman–Kolmogorov equations, i.e., for
any n,m ≥ 0, i, j ∈ S, it holds

p(n+m)
i j =

s

∑
k=1

p(n)ik p(m)
k j .

The Chapman-Kolmogorov equations imply that transition probabilities in n steps can be
obtained from the n-th power of the transition probability matrix P, that is, Pn = (p(n)i j )i j∈S.

In general, the states of a Markov chain can be classified in different ways. Transient and
absorbing states are of special interest in this paper. We will say that the state i is transient
if

P(Xn = i for some n ≥ 1 | X0 = i)< 1.

In other words, if i is a transient state, starting in i, with probability positive the Markov
chain does not return to state i. We will say that state i is absorbing if pii = 1.

Let us introduce an additional notation. Sometimes, we will write Pi to refer quantities
calculated using the probability measure P(· | X0 = i), for instance, we will write Ei(X) to
denote the mathematical expectation of the random variable X calculated with the probabil-
ity measure P(· | X0 = i).

Another amount of interest in this work is the following. Let Ti be given by

Ti = inf{n ≥ 1 : Xn � i},

where inf{ /0} = ∞. If the Markov chain is in state i, then Ti is the first time that Markov
chain leaves state i, for this reason we refer it as exit time from state i. By the Markov
property, under Pi, Ti is a geometric random variable with parameter 1− pii, that is,

Pi(Ti = n) = pn−1
ii (1− pii), n = 1,2,3 . . .

Thus, starting in state i, the expected time that the Markov chain leaves state i is given by

Ei(Ti) =
1

1− pii
.
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Progressive Markov chains
Before introducing progressive Markov chains, we review some facts and results about
Markov chains with absorbing states. From now on, we assume that the states 1, . . . ,r,
r < s are transient states and r+1, . . . ,s are absorbing states. Let T be the absorption time
for X :

T = inf{n ≥ 0 : Xn > r}.

Since i is a transient state, for i ≤ r, if the Markov chain starts in the state i, then the Markov
chain is eventually absorbed. This means that the absorption time is finite, i.e., Pi(T < ∞) =
1, for all i= 1, . . . ,r. For Markov chains with absorbing states, we are particularly interested
in the absorption probability in state k, starting in state i:

uik = P(XT = k | X0 = i),

for i = 1, . . . ,r, k = r+1, . . . ,s, and the mean absorption time:

vi = E(T | X0 = i),

for i = 1, . . . ,r.

The previously defined quantities can be organized in a matrix and a column vector as
follows: U = (uik) and v = (vi)

t .

The transition probability matrix P for this kind of Markov chains can be written as

P =


Q R
O I


, (2)

where O is a zero matrix of dimension (s− r)× r, I is the (s− r)× (s− r) identity matrix,
Q and R are matrices of dimensions r× r and r× (s− r), respectively, given by

Q =




p11 p12 p13 · · · p1r
p21 p22 p23 · · · p2r
p31 p32 p33 · · · p3r
...

...
... · · ·

...
pr1 pr2 pr3 · · · prr




and R =




p1r+1 p1r+2 · · · p1s
p2r+1 p2r+2 · · · p2s
p3r+1 p3r+2 · · · p3s
...

... · · ·
...

pr r+1 pr r+2 · · · pss



.

The matrix M = (I−Q)−1 = (mi j) is known as the fundamental matrix (Kemeny & Snell,
1976). The matrix M allows us to obtain the mean number of visit to a state before to be
absorbed. To be precise, starting in the state i, the mean number of visits to state j before
the Markov chain is absorbed is equal to mi j. Two important identities can be established:

U = MR, v = M1,

where 1 is the column vector whose elements are equal to 1’s, U = (uik) and v = (vi)
t .

In (Pinsky & Karlin, 2011) is established the identity (3.90):

p(n)ik = P(XT = k,T ≤ n | X0 = i),

for n ≥ 1, i = 1, . . . ,r, k = r+1, . . . ,s. Hence

P(XT = k,T = n | X0 = i) = P(XT = k,T ≤ n | X0 = i)−P(XT = k,T ≤ n−1 | X0 = i)

= p(n)ik − p(n−1)
ik ,

for n ≥ 1, i = 1, . . . ,r, k = r + 1, . . . ,s. Therefore, we have the following theorem on the
joint distribution of (XT ,T ) for an absorbing Markov chain.

5
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Theorem 1 Let X be a Markov chain with transition matrix given by (2). Then,

P(XT = k,T = n | X0 = i) = p(n)ik − p(n−1)
ik ,

for n ≥ 1, i = 1, . . . ,r, k = r+1, . . . ,s.

From the latter we have that, for i = 1, . . . ,r, the absorbing probability in state k, is given by

uik = lim
n→∞

P(XT = k,T ≤ n | X0 = i) = lim
n→∞

p(n)ik ,

for k = r+1, . . . ,s. In the same way, the distribution of T under Pi is

P(T = n | X0 = i) =
s

∑
k=r+1


p(n)ik − p(n−1)

ik


,

for n = 1,2,3, . . ..

Definition 2 A Markov chain X = {Xn,n ≥ 0} with state space S = {1, . . . ,s} is called
progressive if its transition probability matrix P is an upper triangular matrix.

For progressive Markov chains only forward transitions are possible. Furthermore, since
the state space is finite, it follows that if X is a progressive Markov chain, then pss = 1,
i.e., the state s is an absorbing state. In this paper we assume that we have more than one
absorbing state, to be precise the progressive Markov chain has s− r absorbing states, with
s− r > 1 and we refer X as a progressive Markov chain with s− r absorbing states. In this
case, the transition probability matrix P is given by

P =




1 2 3 · · · r r+1 · · · s
1 p11 p12 p13 · · · p1r p1r+1 · · · p2s
2 0 p22 p23 · · · p2r p2r+1 · · · p2s
3 0 0 p33 · · · p3r p3r+1 · · · p3s
...

...
...

...
. . .

...
... · · ·

...
r 0 0 0 · · · prr prr+1 · · · prs

r+1 0 0 0 · · · 0 1 · · · 0
...

...
...

... · · ·
...

...
. . .

...
s 0 0 0 · · · 0 0 · · · 1




.

The matrix Q given in the decomposition (2) is as well an upper triangular matrix. Taking
this fact into account, it is straightforward to verify that mii = (1− pii)

−1, for i = 1, . . . ,r,
which coincides with Ei(Ti).

Point estimation
Let X = {Xn,n ≥ 0} an absorbing Markov chain with transition probability matrix P. In
order to estimate P, it is necessary to observe realizations of the process X , that is, a set of
times t and their respective states st .

Let h be a positive integer. If x is a finite set of points obtained observing the Markov chain
X from time 0 to h, then x is called a trajectory or sample path (realization) of length h.
In this case, x = {(t,st), t = 0,1, . . . ,h,st ∈ S}. A random sample of size m of X is a finite
sequence of m independent trajectories of length h: x1, . . . ,xm, where

xa = {(0,s(a)0 ),(1,s(a)1 ), ...,(h,s(a)h )}, a = 1, . . . ,m.

6
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Let x⃗ = (x1, . . . ,xm). Since the trajectories are independent, the likelihood function L(P;⃗x)
is given by

L(P;⃗x) =
m

∏
a=1

P(X0 = s(a)0 , . . . ,Xh = s(a)h ). (3)

Let n(a)i j be the number of transitions from state i to j in the a-th trajectory, since r+1, . . . ,s

are absorbing states, n(a)i j = 0, for i = r + 1, . . . ,s, j � i. Furthermore, pi j = δi j, for i =
r+1, . . . ,s. The above remarks and the Markov property imply

P(X0 = s(a)0 ,X1 = s(a)1 , . . . ,Xh = s(a)h ) =
r

∏
i=1

s

∏
j=1

p
s(a)0

(pi j)
n(a)i j .

Hence, equation (3) becomes

L(P;⃗x) =
m

∏
a=1

r

∏
i=1

s

∏
j=1

p
s(a)0

(pi j)
n(a)i j

=
m

∏
a=1

p
s(a)0

r

∏
i=1

s

∏
j=1

(pi j)
ni j ,

where ni j =
m

∑
a=1

n(a)i j is the number of transitions from i to j considering all sample trajec-

tories. Finally, if we assume that the initial point in every trajectory xi, i = 1, . . . ,m, is
nonrandom, we obtain

L(P;⃗x) =
r

∏
i=1

s

∏
j=1

(pi j)
ni j .

From (2) it follows that in this model, we have r(s−1) parameters to be estimated. Finally,
it is not difficult to verify that the MLEs for pi j, denoted by p̂i j are given by

p̂i j =
ni j

ni
, (4)

where ni is the number of transitions from i in all sample trajectories.

In the case of a progressive Markov chain with s− r absorbing states and all trajectories
start at state i = 1, the likelihood function L(P;⃗x) is given by

L(P;⃗x) =
r

∏
i=1

∏
i≤ j≤s

(pi j)
ni j .

There are (2rs− r2 − r)/2 parameters to estimate and the MLEs for the p′i js are the same as
those given in equation (4).

In (Anderson & Goodman, 1957) the likelihood function is calculated for samples from a
non-homogeneous Markov chain. They also calculate the MLEs in the homogeneous case
and coincide with the estimators given in (4).

Interval estimation
The delta method is a general procedure to derive the variance of a function of asymptoti-
cally normal random variables with known variance. Here we present the version given in
(Casella & Berger, 2002). Let X = (X1, . . . ,Xn′ ) be a vector of random variables such that

√
n(X−Θ)

d−→ Nn′(0,Σ), n → ∞,

7
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where Θ = (θ1, . . . ,θn′) and Σ is the covariance matrix of X. Then if g : Rn′ → R is a
function with continuous first partial derivatives respect to Θ, then it holds

√
n(g(X)−g(Θ))

d−→ N1(0,g′(Θ)tΣg′(Θ)),

where g′(Θ) =
(

∂
∂θ1

g(Θ), . . . , ∂
∂θn′

g(Θ)
)t

. This result allows us to obtain asymptotic confi-

dence intervals for g(Θ) in the following way. Suppose that Σ is unknown and let Θ̂ and Σ̂
consistent estimators for Θ and Σ, respectively. Furthermore, suppose that Θ̂ satisfies

√
n(Θ̂−Θ)

d−→ Nn′(0,Σ), n → ∞.

Then by continuity of the function g′ and the consistency property of Θ̂ and Σ̂, it follows
that σ̂2

g = g(Θ̂)t Σ̂g′(Θ̂) is a consistent estimator for σ2
g = g(Θ)tΣg′(Θ). Thus, the Slutsky’s

theorem implies

√
n(g(Θ̂)−g(Θ))

σ̂g
=

σg

σ̂g

√
n(g(Θ̂)−g(Θ))

σg

d−→ N1(0,1).

The latter equation establishes that an asymptotic 100(1 − α)% confidence interval, for
g(Θ), is given by

g(Θ̂)± zα/2
σ̂g√

n
,

where
σ̂ 2

g = g(Θ̂)t Σ̂g′(Θ̂),

with Θ̂ and Σ̂ being consistent estimators for Θ and Σ, respectively. For a further discussion
of asymptotic normality under transformations see (Mendoza, 1994) and (Serfling, 1980).

By choosing suitable functions g we obtain asymptotic intervals for the following quantities:

i) Absorption probabilities,

ii) Mean absorption time,

iii) Mean exit time from a state.

The procedure for obtaining the confidence intervals of the aforementioned quantities is
described below. Recall that M = (I−Q)−1 and we introduce the following: Ok = (I−
Q)−1Rk = MRk, where Rk is the k-th column of R, for k = r+ 1, . . . ,s. In the same way,
for i = 1, . . . ,r, Mi and qt

i denote the i-th column and row of M and Q, respectively. Finally,
I jl is the matrix with a one in the ( j, l)-th position and zeros elsewhere.

The procedure to construct the asymptotic intervals for every one of aforementioned quan-
tities is to identify the function g and to calculate the consistent estimator for σg, denoted
by σ̂g. The estimator σ̂g is a function of Θ̂ and Σ̂, consistent estimators for Θ and Σ, respec-
tively.

In the examples, the consistency property of Θ̂ and Σ̂ is satisfied since they are function of
the elements of estimated transition probability matrix P̂, which is a consistent estimator for
P (see (Anderson & Goodman, 1957)).

Absorption probability

In (Karson & Wrobleski, 1976) an asymptotic confidence interval for the quantity ct(I−
Q)−1Rk is presented, where c is any suitable vector. The delta method is used to obtain this
asymptotic confidence interval, although it is not explicitly mentioned in this work. From

8
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the result established there and using c = ei, a unit vector with 1 in the component i, we
can obtain the asymptotic confidence interval for the absorption probability in state k when
starting in state i

uik = g(Θ) = eiOk = oik, (5)

for i = 1, . . . ,r, k = r+1, . . . ,s, where

Θ =
�

p1k,qt
1, p2k,qt

2, . . . , prk,qt
r

.

The asymptotic (1−α) confidence interval is given by

oik ±
zα/2√

n


r

∑
j=1

at
j
Σ ja j, (6)

where a j = (mi j, mi jo jk, . . . , mi jo jk)
t , n = n1 + · · ·+nr and

Σ j =




p jk(1− p jk) −p jk p j1 −p jk p j2 · · · −p jk p jr
−p jk p j1 p j1(1− p j1) −p j1 p j2 · · · −p j1 p jr
−p jk p j2 −p j1 p j2 p j2(1− p j2) · · · −p j2 p jr

.

.

.
.
.
.

.

.

. · · ·
.
.
.

−p jk p jr −p j1 p jr −p j2 p jr · · · p jr(1− p jr)


 .

Remark 1 When the actual absorption probability is very small or is almost one, the pre-
vious confidence interval could capture negative values or values greater than one respec-
tively. In this case, using the logit transformation and the delta method again, an alternative
asymptotic 100(1−α)% confidence interval is given by:

 oik exp{−A}
1− oik + oik exp{−A}

,
oik exp{A}

1− oik + oik exp{A}


,

where

A =
zα/2√

n


V (oik)

(oik(1− oik))2 and V (oik) =
r

∑
j=1

at
j
Σ ja j.

Remark 2 Unlike absorption probabilities, to the best of our knowledge, no confidence
intervals have been calculated for mean absorption times and mean exit times. This is
carried out below.

Mean absorption time

By following some ideas given in (Karson & Wrobleski, 1976), based on the delta method,
we obtain an asymptotic confidence interval for the mean absorption time vi:

vi = g(Θ) = ei(I−Q)−11 = eiM1 =
r

∑
j=1

mi j, (7)

for i = 1, . . . ,r, where Θ =
�
qt

1,q
t
2, . . . ,q

t
r

. In this case, we have

Σ =




Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . Σr


 ,

where

Σ j =




p j1(1− p j1) −p j1 p j2 · · · −p j1 p jr
−p j1 p j2 p j2(1− p j2) · · · −p j2 p jr

...
... · · ·

...
−p j1 p jr −p j2 p jr · · · p jr(1− p jr)


 .

9
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Since

∂g(Θ)

∂ p jl
= ei(I−Q)−1I jl(I−Q)−11

= eiMe jet
jM1

= mi jet
jM1

= mi j

r

∑
u=1

mlu,

then, by making

b j = (mi j

r

∑
u=1

m1u,mi j

r

∑
u=1

m2u, . . . ,mi j

r

∑
u=1

mru)
t

= mi j

r

∑
u=1

Mu,

it follows

σ2
g =

r

∑
j=1

bt
jΣ jb j. (8)

Hence, an asymptotic 100(1−α)% confidence intervals for vi is given by

r

∑
j=1

m̂i j ±
zα/2√

n

√
r

∑
j=1

b̂t
jΣ̂ jb̂ j. (9)

Mean exit time

Finally, we have the mean exit time from state i is given by

Ei(Ti) = g(Θ) =
1

1− pii
,

where Θ = pii, for i = 1, . . . ,r. Since
√

ni(p̂ii − pii) is asymptotically normally distributed
with mean 0 and variance pii(1− pii) (see (Anderson & Goodman, 1957)), then

√
ni(g(p̂ii)−

g(pii)) is asymptotically normally distributed with mean 0 and variance σ2
g = g′(pii)

2 pii(1−
pii). Hence, we can obtain an asymptotic 100(1 − α)% confidence interval for Ei(Ti),
namely,

1
1− p̂ii

±
zα/2√

ni

√
p̂ii

(1− p̂ii)3 . (10)

Note that the asymptotic confidence intervals previously calculated were carried out con-
sidering the number of transitions in each state (in the first two considering all transitions
from transient states) and not using the sample size. This implies that we could have a
single path of length h, h large enough, and observe a large number of transitions ni, to
establish the asymptotic results. In summary, the important thing is to have a sufficient
number of Markov chain transitions to obtain asymptotic confidence intervals through the
delta method.

Results and discussion
Through a progressive Markov Chain with two absorbing states, we analyze the academic
trajectories of a group of students from a Mathematics Academic Program in the Au-
tonomous University of Yucatan. The Academic Program allows the students to choose

10
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the subjects to take in each enrollment and there is no restriction for this, so there are no
requirements between subjects that prevent the student’s academic progress. The transition
periods in the proposed discrete-time stochastic process model represent the academic terms
in which students are enrolled. The monitoring of the student’s academic trajectory is car-
ried out by means of the number of accumulated credits and based on this number a semester
is assigned to the student. Thus, in each academic term the student registers to a group of
courses, at the end of the period, based on the courses they pass, the number of credits
accumulated do date is calculated, based on this number a status is assigned (semester) to
the period. Since the student’s progress depends on the number of accumulated credits at
the end of the academic term and the number of credits of a period are at most related to
those of the previous period, we can assume that the stochastic process modeling student’s
academic trajectory satisfies the Markov property. In addition, the students are under the
same characteristics of the Academic Program. Therefore, it is reasonable to assume that
the Markov chain that describes the academic trajectory is homogeneous.

From the above, we propose ten states for the Markov chain model: states from 1 to 8 rep-
resent the semester of the Program in which students are enrolled. The state 9 represents the
graduation status, namely, the student successfully has completed the Program, while state
10 represents the dropout status, this means, the student has withdrawn from the Program
voluntarily or by University regulation. It is worth emphasizing the difference between aca-
demic term and semester; the former refers to a transition period and the latter to a state of
the process.

In developing the model, the following assumptions are made: the student who is currently
enrolled in a semester of the Program could, in the next academic term, either advance to a
higher semester or repeat semester and stay at the same state, this means that the Markov
chain is progressive. Furthermore, considering the Program, the student who has success-
fully completed it or has voluntarily withdrawn, cannot apply for the same Program. This
fact ensures that states 9 and 10 are absorbing states. Therefore, the stochastic process de-
scribing student’s academic trajectory is a progressive Markov chain with two absorbing
states.

The data collected consists of the academic trajectories of 73 students in 16 academic terms
(8 years). Considering the above assumptions and the formula (4), we obtain the estimated
transition probability matrix P of the progressive Markov chain, which is

P =




1 2 3 4 5 6 7 8 9 10
1 0.291 0.544 0.010 0 0 0 0 0 0 0.155
2 0 0.176 0.471 0.265 0 0 0 0 0 0.088
3 0 0 0.057 0.829 0.029 0 0 0 0 0.086
4 0 0 0 0.277 0.692 0.015 0 0 0 0.015
5 0 0 0 0 0.281 0.656 0.047 0 0 0.016
6 0 0 0 0 0 0.218 0.764 0 0 0.018
7 0 0 0 0 0 0 0.438 0.525 0 0.038
8 0 0 0 0 0 0 0 0.656 0.311 0.033
9 0 0 0 0 0 0 0 0 1.000 0
10 0 0 0 0 0 0 0 0 0 1.000




.

The off-diagonal non-zero elements of matrix P correspond to probability a student ad-
vances from a specific semester to another during an academic term, while elements on the
main diagonal are the probabilities a student remains in the same semester, except for p99
and p1010 since states 9 and 10 are not semesters but absorbing states representing graduate
and dropout status, respectively. For instance, if we consider a randomly selected student
who is currently in the first state, namely, in the semester 1, the probability the student
advances in the next academic term to semester 2 is given by p12 = 0.544. For the non-
absorbing states probabilities in the main diagonal of P, we have that the student does not

11
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accumulate enough credits to advance to the next semester, this means that student remains
in the same semester. For example, p44 = 0.277 is the probability of remaining in the fourth
semester.

Decomposing the matrix P as in (2), we obtain the matrices Q and R, namely,

Q =




0.291 0.544 0.010 0 0 0 0 0
0 0.176 0.471 0.265 0 0 0 0
0 0 0.057 0.829 0.029 0 0 0
0 0 0 0.277 0.692 0.015 0 0
0 0 0 0 0.281 0.656 0.047 0
0 0 0 0 0 0.218 0.764 0
0 0 0 0 0 0 0.438 0.525
0 0 0 0 0 0 0 0.656




and

R =




0 0.155
0 0.088
0 0.086
0 0.015
0 0.016
0 0.018
0 0.038

0.311 0.033




.

From the first column of R, it follows that for the first seven semesters, the probability that
an enrolled student successfully completes the Program is 0, while the probability that an
enrolled student will drop out the Program decreases as the semester increases.

To obtain point and interval estimations for the quantities described in Section , we first
estimate the fundamental matrix M. Recall M = (I −Q)−1. Thus, we have

M =




1.41 0.931 0.480 0.892 0.878 0.753 1.097 1.675
0 1.214 0.606 1.140 1.121 0.963 1.402 2.140
0 0 1.060 1.216 1.213 1.041 1.516 2.314
0 0 0 1.383 1.331 1.143 1.665 2.542
0 0 0 0 1.391 1.167 1.702 2.598
0 0 0 0 0 1.279 1.738 2.653
0 0 0 0 0 0 1.779 2.716
0 0 0 0 0 0 0 2.907




.

For progressive Markov chain starting in a transient state, only transitions to the same state
or forward are allowed. So that, the elements of fundamental matrix M have the follow-
ing interpretation: being in semester i, the value mi j is the estimated expected number of
academic terms that a student remains in semester j before completing or dropping out the
Program.

Table 1 shows the estimated expected academic terms until to a student completes or drops
out the Program. The same table shows the 95% confidence intervals for the quantity
aforementioned, both are calculated using the formulas given in equations (7) and (9),
with n1 = 103, n2 = 68, n3 = 35, n4 = 65, n5 = 64, n6 = 55, n7 = 80, n8 = 122 and
n = n1 + · · ·+n8 = 592.
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Tabla 1. Estimated expected numbers of academic terms until a student completes or drops out the
Program

Semester Expected number of academic terms Confidence Interval (95%)
1 8.11 [7.65,8.58]
2 8.58 [8.19,8.98]
3 8.36 [7.98,8.74]
4 8.06 [7.70,8.42]
5 6.85 [6.51,7.21]
6 5.67 [5.33,6.01]
7 4.49 [4.16,4.83]
8 2.90 [2.58,3.23]

The value 2.90 in row eight of Table 1 is the estimated expected academic term until a
student completes or drops out the Program when is in the eighth semester. Further, with a
confidence level of 95%, the real expected academic term value is between 1.99 and 3.83.
We can observe that the width of confidence intervals decreases as the semester increases.
The latter behavior is because of the estimated variance given in (8) decreases, that is, for
any semester i, the vector b̂ j is null for all semester j < i, hence b̂t

jΣ̂ jb̂ j = 0, for all j < i.

Using equation (5), we can estimate the probability that Markov chain is absorbed in a
specific absorbing state when the student is in state i. The Tables 2 and 3 show the estimated
absorption probabilities in graduate and dropout status, respectively.

Tabla 2. Estimated probabilities of graduate status when the student is currently in the i-th semester

Semester Probability of graduate status Confidence Interval (95%)
1 0.52 [0.48,0.56]
2 0.66 [0.62,0.71]
3 0.72 [0.68,0.76]
4 0.79 [0.75,0.84]
5 0.80 [0.76,0.85]
6 0.82 [0.78,0.87]
7 0.84 [0.80,0.89]
8 0.90 [0.86,0.94]

Tabla 3. Estimated probabilities of dropout status when the student is currently in the i-th semester

.
Semester Probability of dropout status Confidence Interval (95%)

1 0.48 [0.44,0.52]
2 0.34 [0.29,0.38]
3 0.28 [0.24,0.33]
4 0.21 [0.16,0.26]
5 0.20 [0.15,0.24]
6 0.18 [0.13,0.22]
7 0.16 [0.11,0.20]
8 0.10 [0.06,0.14]

From the Table 2, we infer that in semester eight a student has a high probability 0.9 to
achieve graduate status. We can also observe the probability a student completes the Pro-
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gram increases as the semester increases. On the other hand, the Table 3 shows that in
semester eight a student has a low probability of dropping out of the Program.

From the Scholar Program Administration point of view an important quantity to estimate
is the expected time that a student sojourns in the j-th semester before moving to some
upper semester, and also to obtain a 95% confidence interval for this quantity. These values
corresponding to mean exit times. Therefore, we use (10) to estimate them. In this case also
we have n1 = 103, n2 = 68, n3 = 35, n4 = 65, n5 = 64, n6 = 55, n7 = 80, n8 = 122.

Tabla 4. Estimated expected sojourn times in the semester i

Semester Expected sojourn time Confidence Interval (95%)
1 1.41 [1.24, 1.58]
2 1.21 [1.08, 1.35]
3 1.06 [0.97, 1.15]
4 1.38 [1.18, 1.59]
5 1.39 [1.18, 1.60]
6 1.28 [1.10, 1.46]
7 1.78 [1.44, 2.12]
8 2.91 [2.19, 3.62]

From Table 4, we observe a student in semester seven has an expected sojourn time in that
semester of 1.78 academic terms, this means that a student takes almost two periods to move
from semester seven and with a 95% confidence level, the real expected sojourn time value
is between 1.44 and 2.12 academic terms.

To end this section, by Theorem 1, we estimate P(XT = 9,T = n|X0 = 1) for n= 1,2, . . . ,16,
namely, we estimate the probability of dropping out of the Program exactly in the n-th
academic term. We organize these probabilities through a graph and determine the academic
term in which the student has the highest probability to drop out of the Program. In Figure
1 we can observe that in the first academic term there is a higher probability of dropping out
of Program, the probability is 0.15.

Figura 1. Probability of dropping out of the Program

On other hand, we also estimate probability of completing the Program exactly in n-th aca-
demic term: P(XT = 9,T = n|X0 = 1) for n = 1,2, . . . ,16. We organize these probabilities
through a graphic and we determine the academic term where it is most probable that the
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student will complete the Program. In Figure 2 we can observe that in the tenth academic
period there is higher probability of completing the Program, the probability is 0.077.

Figura 2. Probability of completing the Program

Conclusions
The statistical analysis of the academic trajectories provides useful and valuable information
to identify weaknesses and improvement opportunities of the Program. For example, from
our analysis and with the help of the administrators, we should be able to answer why the
expected sojourn times per semester of a student for the seventh and eighth semesters are
longer than previous ones.

The results obtained indicate that in the eighth semester, the probability of staying in a
semester is higher compared to other semesters, this fact implies that in the eighth semester
there is a greater expected sojourn time than in other semesters and its respective confidence
interval is wider compared with the confidence interval of other semesters. The latter means
that in the eighth semester students have difficulty accumulating credits to graduate. In the
eighth semester there is an estimated expected sojourn time of 2.9 academic terms, and
with a confidence level of 95%, the mean number of academic terms which a student has
to accumulate enough credits to be able to graduate from the career is between 2.19 and
3.62 academic terms, which means, approximately between 1 and 1.5 years. Instead, the
estimated probability of staying in third semester is lower compared to other semesters, this
fact implies that in the third semester there is an expected sojourn time shorter than in other
semesters and its respective confidence interval is shorter compared with the confidence
interval of other semesters. The latter means, in the third semester, the average of academic
terms that a student takes to accumulate the credits to advance is between 0.97 and 1.15
academic terms (with a 95% confidence level), that is, on average an academic term is
maintained so that after that time the student advances to another semester.

From Figures 1 and 2, we conclude that the first two academic terms, which are related to
the first semesters, there is a higher probability that a student will drop out of the Program,
while the tenth and eleventh academic terms have a higher percentage that a student will
complete the Program (between 5 and 5.5 years to graduate).

Finally, the Academic Program is designed in such a way that the credits assigned to subjects
offered for the first semesters are greater than credits assigned to subjects offered for more
advanced semesters. From this we deduce that in the first semesters there is the opportunity
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to accumulate enough credits that allow the student to advance two semesters (two states)
in an academic period, as opposed in the last semesters, for example, a seventh-semester
student cannot finish the program in that semester. This is observed in the estimated transi-
tion probabilities given in the transition matrix P̂, for example, p̂13 = 0.010, p̂24 = 0.265,
p̂35 = 0.029, p̂46 = 0.015, p̂57 = 0.047 and p̂68 = 0, p̂79 = 0.
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