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2Departamento de F́ısica, Universidad del Valle, Cali, Colombia

Abstract

We analyse the classical and quantum behaviour of a particle trapped in a diamond-shaped billiard with rounded
crown. We defined this billiard as a half stadium connected with a triangular billiard. A parameter ξ smoothly
changes the shape of the billiard from an equilateral triangle (ξ = 1) to a diamond with rounded crown (ξ = 0).
The parameter ξ controls the transition between the regular and chaotic regimes. The classical behaviour is regular
when the control parameter ξ is one; in contrast, the system is chaotic when ξ �= 1 even for values of ξ close to one.
Several quantities such as Lyapunov exponent and the entropy of the distribution of the incident angle are used
to characterize the chaotic behaviour of the classical system. The average information preserved by the classical
trajectories increases rapidly as ξ is decreased from 1 and the Lyapunov exponent remains positive for ξ < 1. The
Finite Difference Method was implemented in order to solve the quantum counterpart of the billiard. The energy
spectrum and eigenstates were numerically computed for different values of ξ < 1. The spacing distribution between
adjacent eigenvalues is analysed as a function of ξ, finding a Poisson and a Gaussian Orthogonal Ensemble (GOE)
distribution for regular and chaotic regimes respectively. Several scars and bouncing ball states are shown with
their corresponding classical periodic orbits. On the other hand, the results found for the quantum billiard are in
agreement with the Bohigas-Giannoni-Schmit conjecture and exhibits the standard features of chaotic billiards such
as the scarring of the wavefunction.

Keywords: quantum chaos, quantum billiards, random matrices, finite difference method.

Caos en el billar de forma de diamante y corona redondeada

Resumen

Se estudia el comportamiento de una part́ıcula en el interior de un billar triangular donde uno de sus lados toma
de medio estadio que se llamó billar diamante con corona redondeada o DSRC por su siglas en inglés. Se definió un
parámetro ξ que cambia suavemente la forma la frontera partiendo de un billar triangular ξ = 1 a un billar DSRC
ξ = 1. Dicho parámetro controla la transición entre el régimen regular y caótico. Clásicamente, el sistema es regular
cuando ξ = 1. Por otro lado, el sistema se torna caótico para ξ �= 1 incluyendo valores próximos a 1. Se calcula
el coeficiente de Lyapunov y la entroṕıa media de la distribución de los ángulos de incidencia para caracterizar el
comportamiento caótico del sistema. Se observó un rápido crecimiento de la información de las trayectorias hasta
saturar la entroṕıa al cambiar levemente la frontera del billar triangular original. A su vez el coeficiente de Lyapunov
se mantuvo positivo durante este proceso una vez que ξ se alejaba de 1. Se implementó el método de diferencias
finitas FDM para obtener el espectro y los estados propios de la contraparte cuántica del sistema. La distribución de
espaciamiento entre primeros vecinos para varios valores de ξ fue construida numéricamente para diferentes valores
de ξ encontrando una distribución de Poisson y otra correspondiente al ensamble ortogonal gaussiano GOE dentro de
las regiones clásica y caótica respectivamente. Se identificaron cicatrices en algunos de sus estados aśı como estados
de “bola rebotadora” con sus correspondientes órbitas periódicas. El sistema exhibe un comportamiento que está
de acuerdo a la conjetura BGS y presenta las caracteŕısticas t́ıpicas de un billar caótico como la cicatrización de la
función de onda.

Palabras clave: caos cuántico, billares cuánticos, matrices aleatorias, método de diferencias finitas.
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1 Introduction

Billiards are one of the most used systems to anal-
yse the quantum signatures of classical chaotic motion
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Some advantages of the billiards are their extreme simplic-
ity, their straightforward quantization and the possibility
to measure many of the relevant quantities in laboratory
experiments [18, 19, 20, 21, 22, 23, 24, 25].

Many aspects of classical and quantum chaos have been
widely studied by means of billiards with different shapes
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. We
offer a brief review about some commonly used methods to
characterize the classical and quantum motion of particles
inside billiards. For this purpose we use the diamond-
shaped billiard with rounded crown which is described in
next section. For the classical case, we focus on the deter-
mination of the trajectories, Lyapunov exponents and the
entropy of the distribution of incident angles. In the quan-
tum case, it is studied the spacing distribution between
adjacent eigenvalues of the Hamiltonian and the scarring
of the wave function.

Basically, a billiard is a system where a particle, with
mass m, is trapped into a region D with perfect reflecting
boundaries. The dynamics of the particle varies depend-
ing on the shape of the billiard boundary ∂D. The car-
dioid billiard, the Bunimovich billiard (stadium billiard)
and non-equilateral triangular billiards are typical exam-
ples which exhibit classical chaos. The quantum problem
is reduced to solve the Helmholtz equation for the wave
function ψ(�r)

(
�∇2 + κ2

)
ψ(�r) = 0 for �r ∈ D (1)

with the Dirichlet boundary condition ψ(�r) = 0 if �r ∈ ∂D
where κ =

√
2mE/� is the wave vector and E is the en-

ergy. For Hamiltonian systems, the statistical properties
of the energy levels can be studied taking borrow some re-
sults from the random matrix theory. For example, it is
well known that the energy level spacing distributions of a
system is Poissonian if its classical counterpart exhibits a
regular motion. Some examples are billiards whose shape
is a rectangle (particle in a two dimensional box), an equi-
lateral triangle, a circle or an ellipse. On the other hand,
if the classical counterpart has a chaotic motion, then the
energy levels follow the same distribution of the eigenval-
ues of the Gaussian Orthogonal Ensemble (GOE) distribu-
tion [26, 27, 28, 29, 31]. Other non convex and chaotic two
dimensional quantum cavities are the Sinai and the an-
nular billiards where an inner disk of infinite potential is
placed into a rectangular or circular billiard, respectively.

2 Geometrical considerations

As mentioned before, this paper is devoted to the study
of the motion of a particle inside of a diamond-shaped bil-
liard with rounded crown (DSRC billiard) which is shown
in Fig. 1. The shape of the upper boundary of the billiard
is a half stadium defined by the equation y = f(x) with

f(x) =





√
R2 −

(
x+ d1

2

)2
if −R− d1

2 < x ≤ −d1

2

R if |x| ≤ d1

2√
R2 −

(
x− d1

2

)2
if d1

2 < x ≤ d1

2 +R

(2)
On the other hand, the shape of the lower boundary
y = g(x) is given by

g(x) =




−d2x

R+ d1

2

− d2 if −R− d1

2 < x < 0

d2x

R+ d1

2

− d2 if 0 < x < R+ d1

2

(3)

The parameters which determine the shape of the billiard
R, d1 and d2 are functions of the control parameter ξ. Ex-
plicitly we define R(ξ) = Ro (1− ξ), d1(ξ) =

(
5
2 + ξ

)
Ro

and d2(ξ) =
√

3
4d1(ξ). Henceforth, we take Ro = 1. For

ξ = 1 the shape of the billiard resembles a diamond with
rounded crown and for ξ = 0 the shape is an equilateral
triangle.

As shown in Fig. 1, for intermediate values of ξ there
is a smooth interpolation between these two shapes. The
boundary can be conveniently expressed in polar coordi-
nates as follows

rc(φ) =




r+(φ) if φA ≤ φ < φB
R

sinφ if φB ≤ φ < φC

r−(φ) if φC ≤ φ < φD

l−(φ) if φD ≤ φ < φE

l+(φ) if φE ≤ φ < 2π

(4)

In Eq. (4), the left (−) and right (+) quarter of circles are
defined according to

r±(φ) =
1

2

(
±d1 cosφ+

√
4R2 − d21 sin

2 φ

)
. (5)

while the straight lines DE and EA are given by

l±(φ) =
d2

∓d2 cosφ
R+d1/2

− sinφ
(6)

The φ-coordinate of the points from A to E can be writ-

ten as φA = 0, φB = arctan
(

2R
d1

)
, φC = arctan

(
2R
d1

)
+

2arctan
(
d1

2R

)
, φD = π and φE = 3

2π, respectively.
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Figure 1: The diamond-shaped billiard with rounded crown is defined through the functions f(x) and g(x). In turn,
these functions depend on the parameters R, d1 and d2.

3 Classical diamond-shaped bil-
liard with rounded crown

3.1 Trajectories

There are two degrees of freedom in the DSRC billiard,
thus its phase space has four dimensions. The elastic col-
lisions between the particle and the boundaries ensure the
energy conservation reducing the number of dimensions to
three. As usual, in order to obtain the dynamical informa-
tion of the system, we construct the Poincaré section, and
the dynamical behaviour of the particle can be described
by a two-dimensional map. This method is equivalent to
choose two variables which define where and how the col-
lisions occur inside the billiard.

We choose a rescaled arclength l(φ) and the angle α
as the variables to describe the particle motion in the bil-
liard. These variables are schematized in Fig. 2. The
angle α gives the direction of the velocity after the im-

pact and the rescaled arclength is defined as l(φ) = L(φ)
L(2π)

where L(φ) =
∫ φ

0

√
rc(φ)2 + (drcdφ )2dφ is the arclength

measured from the point A. Following the standard pro-
cedure, it is necessary to express the position and the inci-
dent velocity of the (n + 1)-th collision in terms of the
of the position and velocity of the n-th collision. Let(
x(n), y(n)

)
=

(
rc

(
φ(n)

)
, φ(n)

)
and �v(n) = (v

(n)
x , v

(n)
y ) be

position and the incident velocity of the n-th collision, re-

spectively. The normal v
(n)
n and tangent v

(n)
t components

of the velocity are calculated by projecting the velocity
into the normal, n̂(φ), and the tangent, t̂(φ), unitary vec-
tors of the boundary, see Fig. 2. As consequence of the
elastic collisions with the boundary the normal compo-
nent velocity changes its sign while the tangent compo-
nent remains unchanged. Thus, one can obtain the ve-
locity �v(n+1) after the n-th collision which is also the in-
cident velocity (n + 1)-th collision. In order to accom-
plish this calculation the components of the tangent vector
�t = d

dφ (rc(φ) cosφ, rc(φ) sinφ) = (Tx, Ty) are required. A
simple calculation gives

Tx(φ) =




−r+(φ) sinφ+ cosφw+(φ) if φA < φ < φB

−R if φB < φ < φC

−r−(φ) sinφ+ cosφw−(φ) if φC < φ < φD

(R+ d1/2) a if φD < φ < 2π
(7)

and

Ty(φ) =




r+(φ) cosφ+ sinφw+(φ) if φA < φ < φB

0 if φB < φ < φC

r−(φ) cosφ+ sinφw−(φ) if φC < φ < φD

−d2a if φD < φ < φE

d2a if φE < φ < 2π
(8)

where we have defined

w±(φ) = ∓1

2
d1 sinφ

(
1± d1 cosφ

2r±(φ)∓ d1 cosφ

)
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Figure 2: Variables of the reduced phase space. The blue dashed line represents the rescaled arclength l(φ) while α is
the angle formed by the normal vector at position φ, n(φ), and the trajectory of the particle after the impact.

with

a =
1√(

R+ d1

2

)2
+ d22

.

The normal vector n̂ is obtained by rotating the tangent
vector n̂ = R(−π/2)t̂, hence nx(φ) = ty(φ) and ny(φ) =
−tx(φ). On the other hand, the position of the (n+ 1)-th
collision is calculated as follows. The straight line which
crosses through the points

(
x(n), y(n)

)
and

(
x(n+1), y(n+1)

)
is given by Y (n)(x) = m(n)x + b(n). The slope and the y-
intercept can be written as

m(n) =
v
(n)
y

v
(n)
x

and b(n) = y(n) − v
(n)
y

v
(n)
x

y(n) , (9)

respectively. The x coordinate of the intersections of the
line Y (x) with the boundary satisfy

x∗
i =




x±
+ if d1

2 < x±
+ ≤ d1

2 +R and Y (x±
+) > 0

R−b
m if |R−b

m | ≤ d1

2 and Y (R−b
m ) > 0

x±
− if −R− d1

2 < x±
− ≤ −d1

2 and Y (x±
−) > 0

x+ if −R− d1

2 < x+ < 0 and Y (x+) < 0

x− if 0 < x− < R+ d1

2 and Y (x−) < 0
(10)

where we have defined

x± = ∓ (b+ d2)(d1 + 2R)

2d2 ±m(d1 + 2R)
and (11)

x±
s =

s d1 − 2bm±
√

4(1 +m2)R2 − (d1m+ 2b)2

2(1 +m2)
(12)

with s = {+,−}. The DSRC billiard is a convex billiard,
then, Eq.(10) has two roots: x∗

1 and x∗
2. One of them is

the position of the n-th collision, xn = (x∗
1)

(n), which is
already known. The second root gives the position of the
(n+ 1)-th collision

x(n+1) = (x∗
2)

(n) and y(n+1) = Y (n)
(
(x∗

2)
(n)

)
. (13)

In general this procedure can be applied satisfactorily.
Nonetheless, if the particle reaches one of the points
{A,D,E} where vectors n̂ and t̂ are not well defined, then
the method described previously cannot be applied. This
is an unlikely event, however, the problem can be avoided
by taking the average of the normal and tangent vectors
of the boundaries connected in those problematic points.
Some trajectories of the particle inside the triangular and
the DSRC billiards are shown in Fig. 3. These trajectories
were found by using the procedure previously described in
this section. For the triangular billiard (ξ = 1), we found
regular and periodic trajectories. In contrast, for values of
ξ close to one, e.g. ξ = 0.99 there are irregular trajectories.
In order to obtain information about the motion of the
particle, the trajectories were mapped into a Poincaré sec-
tion defined by the collision angle and the arclength. The
periodic orbits of the triangular billiard are represented as
a set of two or more points in the Poincaré section. This
is the case of the trajectories (a),(b),(c),(e),(g) and (h)
shown in Fig. 3. Quasi-periodic orbits such as the ones
of Figs. 3 (e) and (f)) are represented by a set of straight
lines in the Poincaré section (see Fig. 4).

In order to illustrate the destruction of regular trajec-
tories we have calculated the particle motion for the same
initial conditions of Figs. 3 (e) to (h) but taking now
ξ = 0.99 . In this way, for Fig. 3 (i) we have used the
same initial condition of Fig. 3 (e), (j) the same initial
condition of (f) and so on.If the shape of the triangular
billiard is slightly changed, the trajectories shown in Figs.
3 (e)-(f) become irregular as shown in Figs. 3 (i)-(k). How-
ever, the trajectory shown in Fig. 3 (h) remains regular
for ξ = 0.99. Eventually, the regular trajectories can be
immersed inside of a chaotic sea in the Poincaré section
(black points in Fig. 4-(b)), this is the case of the periodic
orbit of Fig. 3-(h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3: Several trajectories which include 1000 collisions are shown. (Figures a-d) Some closed orbits of the triangular billiard
ξ = 1. (Figures e-h) ξ = 1− 1× 10−16, note that regular behaviour is obtained only for values of ξ very close to 1. (Figures i-l).
Trajectories of the DSRC billiard for ξ = 0.99.

3.1.1 Entropy

In the previous section, a simple methodology based on
geometrical considerations was used to find the classical
trajectories of the particle inside the billiard. This is not
the more elegant way to find trajectories. In fact, it is
possible to find a transformation or map which connects
the variables of the reduced phase space of consecutive
collisions of the DSRC billiard. In principle, for a given
initial condition, the trajectory of the particle can be con-
structed if this map is known. Avoiding the very special
cases of the periodic orbits, the degree of irregularity of a
set of trajectories with different initial conditions depends
only on the shape of the billiard. Let αn be the incident
angle with respect to the normal vector of the boundary.
Note that αi ∈ I and I = [−π/2, π/2]. This interval can be
divided into M equal subintervals Ii. Then, for a given ini-
tial condition N collisions are generated and their respec-
tive incident angles αn are calculated (n = 1, 2, 3, . . . , N).
We repeat this procedure for several different initial condi-
tions. Let Ni be the number of angles αn which belong to

the interval Ii. Then, the probability to find an incident
angle in the interval Ii is P (Ii) =

Ni

N . The entropy S of
the distribution (Ii) can be written as [32]

S = −
N∑
i=1

P (Ii) ln [P (Ii)] . (14)

Note that, the maximum entropy is obtained when the
set of generated incident angles {αn} are uniformly dis-
tributed in the subintervals {Ii}. For this case, the prob-
ability is equal for each subinterval, i.e., P (Ii) =

1
M , and

the entropy takes its maximum value Smax = ln(M). On
the other hand, if all incident angles belongs to a single
subinterval Ij , P (Ii) = δij and the entropy is zero. For
a given control parameter, we have computed the average
entropy for a set of 1000 different random initial condi-
tions. The results are shown in Fig. 5. As expected, the
smallest value of entropy is obtained when ξ is exactly one
and the billiard is an equilateral triangle. The entropy
grows quickly for values of ξ close to one. For example,
lets consider ξ = 0.99 where the entropy is close to the
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(a) Poincaré section for ξ = 1 (b) Poincaré section for ξ = 0.99

(c) Poincaré section for ξ = 0 (d) Typical trajectory for ξ = 0

Figure 4: Poincaré section. (Figure a) Poincaré section of the triangular billiard. Each color represent a different initial con-
dition. Red, blue, gray and black points correspond to the trajectories (e), (f), (g) and (h) of Fig. 3, respectively. (Figure b)
Poincaré section of the the DSRC billiard for ξ = 0.99. (Figure c) Poincaré section for ξ = 0. (Figure d) Typical irregular
trajectories of the DSRC billiard for ξ = 0.

55% of its maximum theoretical value. For values of ξ
close to zero, the entropy reaches its saturate value which
is about the 70% of Smax. As shown in Fig. 3, for values
of ξ close to zero (DSRC billiard) the trajectories of the
particle are more complex than the ones found for ξ close
to one (triangular billiard).

3.1.2 Lyapunov exponent

The Lyapunov exponent λ is used as a measure of diver-
gence between the trajectories of a couple of infinitesimal
close initial conditions in the phase space. Usually, λ is
calculated as a function of time. However, the time is not
a suitable parameter to compute λ in billiard systems since
the particle movement is linear between collisions and as
consequence the distance between trajectories diverges lin-
early. Instead of the time, the collision index n was used as
parameter. The sensibility to small changes in the initial

conditions is characterized by δn = δo exp (λn) where δn is
the absolute value of the difference between the incident
angles of nearby initial conditions after n collisions. The
typical behaviour of λ for a pair of nearby initial condi-
tions is shown in Fig. 6. Note that after few collisions λ
reaches its maximal value, i.e., the exponent saturates.
For a couple of close random initial conditions, the tra-
jectories were generated and the Lyapunov exponent was
computed, see Fig. 6 (left). In order to avoid the de-
pendence with the initial conditions the Lyapunov expo-
nent was averaged for several couples of initial conditions.
The behaviour of λ for different values of ξ is shown if
Fig. 7 (right). Note that the Lyapunov exponent shown
in Fig.7 (right) does not decrease monotonically and is not
as smooth as the entropy of Fig. 5. This happens even if
the number of pairs of initial conditions is increased. This
is not an unexpected result because not all sets of initial
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Figure 5: Entropy. (left) Entropy computed for a single value of ξ and one initial random condition. (right) Average
entropy for 1000 random initial conditions. In all cases the number of collisions taken into account were N = 3000 and
number of interval was M = 100.

Figure 6: Lyapunov exponent saturation. This is a typical graphic obtained for a single value of the control parameter
(ξ = 0.9999) and one random initial condition; 40 collisions are considered. For this particular situation the saturation
occurs after the 13-th collision. The Lyapunov exponent is the slope of the non-saturated part.

conditions reach saturation after the same number of col-
lisions. However, Fig. 7 captures an important feature of
the billiard: as the half stadium appears over one side of
the original equilateral triangle, then the Lyapunov expo-
nent increases, indicating sensibility to the initial condi-
tions, even for values of ξ close to one.

4 Quantum diamond-shaped bil-
liard with rounded crown: Finite
Difference Method Implementa-
tion

In previous section, the chaotic behaviour of the classi-
cal system was described in terms of the trajectories, the

lyapunov exponents and the entropy of the distribution of
incident angles. In the quantum version of the problem,
the signatures of chaos are described in terms of the spac-
ing distribution between adjacent eigenvalues and through
the scarring of wave functions. The eigenvalues and eigen-
functions of the Hamiltonian are typically calculated by
using the finite element method (FEM) [33]. However, we
prefer to use the finite difference method (FDM) to express
the Hamiltonian as a matrix and then solve the resulting
eigenvalue problem. The FDM is described in Appendix.
In order to test the validity of the numerical results we
compared them with the exact ones for the equilateral tri-
angular billiard. The triangular billiard is integrable and
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Figure 7: Averaged Lyapunov exponent. The number of random initial conditions used for each graph was (left) 10
and (right) 1000.

the expression for the energy levels is well known [35]

En = Epq =

(
4π

3

)2 ( �2

2md21

)(
p2 + q2 − pq

)
(15)

where d1 is the edge length when ξ = 1, p and q are pos-
itive integers which satisfy q ∈ [1, p/2]. A comparison of
the numerical and analytic energy levels is shown in Table
1. The relative error is small in all cases.

One advantage of the FDM lies in the fact that Hamilto-
nian is computed by the direct evaluation of the potential
and some Kronecker deltas. As consequence, it is possi-
ble to build a Hamiltonian matrix with size 11000× 11000
which in a personal computer (an i7 processor in our case)
can be diagonalized with the Fortran Lapack package in
less than 25 minutes. In order to check the accuracy of
the results, a comparison with the energy staircase func-
tion N (E) with the Weyl-type formula was performed.
N (E) gives the number of energy levels below the energy
value E. N (E) is defined by

N (E) :=
∑
i

θ (E − Ei) (16)

where θ(x) is the step function. The analytical result for
a two-dimensional billiard with area A and perimeter P is
given by [36, 37, 38, 39]

N (E) =
A

4π

(
2mE

�2

)
− P

4π

√
2mE

�2
+ o(E1/2). (17)

The Weyl formula is only valid in the semiclassical limit,
i.e., for high energy levels. In Figure 9 we have superposed
the numerical result of the energy staircase function with
the one provided by (17). The agreement is very good for

energy values E such E/E1 < 500 where E1 is the ground
state. The differences between the numerical results and
the theoretical prediction for high energies is due to the use
of a discrete Hamiltonian with finite dimension instead of
the exact Hamiltonian which has infinite dimension. Then,
it is not surprising that the discretization procedure is not
able to describe properly wavefunctions for high energies.
These states have very small wavelength oscillations. For
this reason, to calculate the wavefunctions for large energy
it is necessary to increase of the number of points of the
mesh. The number of points taken in our mesh is ∼ 11000,
as consequence, only the first ∼ 200 computed states are
reliable.
Other typical signature of chaos in quantum billiards is the
scar identification in the semiclassical regime, i.e., for large
values of energy. One of the most widely used method
to scar identification is the improved Heller’s PWDM
(Heller’s plane wave decomposition method) [40]. This
method avoids the computation of the eigenvectors near to
the ground state calculating directly the states with high
quantum numbers. We used the finite difference method
in order to diagonalize quantum DSRC billiard. Some of
the first excited states of this billiard are shown in Fig. 8.
This states are symmetric or antisymmetric with respect
to the symmetry axis of the billiard. This ensures that
the square of the wavefunctions is always symmetric with
respect to this axis.

5 Quantum diamond-shaped bil-
liard with rounded crown: level
statistics

Several experiments with quantum hard wall billiards were
performed in the nineties. One example is given by the mi-
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Figure 8: DSRC billiard wavefunctions. Here some eigenfunctions are plotted using the a grid with Q = 4618 inner
points (see Fig. 18), and the control parameter was set as ξ = 1. We have set m = 1 and � = 1.

crowave resonators, which use the equivalence between the
stationary Scrödinger equation with the Helmholtz equa-
tion to study chaos in quantum billiards using electromag-
netic waves [41]. Other devices used in the study of quan-
tum chaos were the semiconductors billiards, which are
essentially open quantum cavities that permit a current
flow through two contact points. These systems are differ-
ent from a quantum billiard, because the later is a com-
pletely closed system which confines the particle inside of
it. However, if the size of the quantum open cavity is much
smaller than the mean free path of the electrons, then the
behaviour of both systems are similar. For example, they
share the same energy level statistics and the scarring of
the wavefunction [33]. For Hamiltonian systems such as
the one described in this paper, the spacing distribution
of the energy levels, P (s), is a feature which characterize
the spectrum of a system with regular or chaotic classi-
cal analogue. According to the Bohigas-Giannoni-Schmit
conjecture [42] the spectra of a time-reversal-invariant sys-
tem with classical chaotic counterpart follows a Gaussian

Orthogonal Ensamble (GOE) distribution. On the other
hand, if the classical analogue is regular, the spectrum is
characterized by a Poisson distribution (see Fig. 10). This
conjecture has been tested in a variety of systems includ-
ing billiards [1, 4, 5, 16, 7, 30].
The DSRC billiard has a mirror reflection symmetry axis.
For this reason, there are two set of states each one re-
lated to a symmetry class. Lets name them for instance,
odd and even eigenstates. The general expression of the
nearest neighbour spacing distribution for a superposition
of N independent spectra in the GOE statistics is given
by [43]

PN GOE(s) =
∂2

∂s2

[
erfc

(√
πs

2N

)]N
(18)

where s is the energy spacing between nearest neighbour
levels, and erfc(s) is the complementary error function.
The spacing distribution for N = 2 is

P2GOE(s) =
1

2
e−

s2π
8 +

πs

8
e−

s2π
10 erfc

(√
πs

4

)
. (19)
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Figure 9: Spectral staircase function for the DSRC billiard. (left) Superposition of the numerical staircase energy
staircase function (solid line), with the Weyl’s formula (dashed line). (right) A zoomed region corresponding to the
blue rectangle of the graphic on the left side.
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Figure 10: Nearest neighbor spacing distribution of the energy levels of the triangular billiard. The histogram was
built using the analytic expression for the energy levels of the equilateral triangular billiard (see Eq. (15)). The level
statistics is Poissonian (solid line) because the equilateral triangle billiard is regular. For the irregular case, the nearest
neighbor spacing distribution will follow either a GOE2 distribution (dashed line) or a GOE distribution (dot dashed
line) according to the billiard symmetries.

In Fig. 11 it is shown the nearest neighbour spacing
distribution for the DSRC billiard which, as expected, is
well fitted by the P2GOE (GOE2) distribution. There are
two ways to recover the GOE distribution: the first one
is classify the energy levels according to the parity of the
eigenstates and then build the corresponding histogram
with one of these two sets. The disadvantage of this
method is that only takes into account approximately the
half of the energy levels computed. The second method
consists in statistical study of the spectrum corresponding
to the desymmetrized billiard. In this case the billiard is

desymmetrized by taking a half of it following the symme-
try axis. As shown in Fig 12, the statistical behaviour of
the energy levels obeys a GOE distribution.

Another important feature of quantum billiards with
chaotic classical counterpart is the high concentration of
the wavefunction amplitude along the classical periodic or-
bits. The phenomenon was initially observed by McDonald
and Kaufman [44], and posteriorly in the Bunimovich bil-
liard by Heller [45]. Heller called this phenomena a scar.
The scarring of wavefunction does not appear in regular
billiards such as the ones with rectangular, circular or
equilateral triangle shapes. This phenomena is exclusive
for billiards where their classical counterpart has chaotic
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Figure 11: Nearest neighbor spacing distribution of the complete billiard. (left) The histogram of the level spacing
distribution was built using the first 800 energy levels, the first one hundred states were not taken. The total number
of energy levels computed using the finite difference method was Q = 11026. (right) Ninth state of the complete DSRC
billiard.
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Figure 12: Nearest neighbor spacing distribution of the desymmetrized DSRC billiard. (left) The histogram of the
level spacing distribution was built using the first 500 energy levels. The total of energy levels computed using the
finite difference method was Q = 11252. (right) Ninth state of the desymmetrized DSRC billiard.

behaviour. As the quantum numbers are increased, we
expect to recover the classical properties of the system,
which is, in some sense, the idea behind the correspon-
dence principle. In a classical chaotic billiard, a trajectory
which evolves from an arbitrary initial condition tends to
fill the whole billiard. As consequence, a typical wavefunc-
tion do not have a significant localization. This is the more
common situation for the irregular billiards. Nonetheless,
for the special case of an unstable periodic orbit, it is
possible to find a high probability density underlying such
classical trajectory. This can be intuitively understood at
least in the semiclassical limit. Some scars and bouncing
ball states are shown in Fig. 13. The bouncing ball states
have a well defined momentum, but not position. Then we
can associate a set of classical periodic orbits to a single

bouncing ball state. In contrast, a scar is related to a
single unstable periodic orbit.

Example of scars are shown in Figs. 13-(a) and 13-(c).
The stability of the orbits with lowest period is shown in
Fig. 14.

6 Quantum diamond-shaped bil-
liard with rounded crown: time
evolution of the state vector

The time evolution of the state vector for quantum Hamil-

tonian systems is given by | Ψ(t)〉 = e−i Ĥt
� | Ψ(0)〉. Ex-
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Figure 13: Some scarred wavefunctions and bouncing ball states of the DSRC billiard.

panding the state vector over the corresponding station-
ary states | Ψ(�r, 0)〉 =

∑
s cs | ψ(s)〉, and taking the inner

product with 〈�r| it is possible to find

〈�r | Ψ(t)〉|�r=�ru
= Ψu(t) =

∑
s

cs exp

(
− iEst

�

)
ψ(s)
u .

The components cs can be calculated in the usual way.

However, we prefer to use the lattice representation in or-
der to calculate cs in an easier way. Explicitly we found

cs = lim
δ2�r→0

∑
u∈D

ψ(s)
u Ψu(0)δ

2�r. (20)

Since the eigenvectors of the Hamiltonian matrix, given
by Eq. (29), are real, then the complex conjugation has
been dropped. For large values of Q, it is possible to cal-
culate cs from Eq. (6) ignoring the limit δ2�r → 0. The
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Figure 14: Orbits stability. (left) Unstable periodic orbit after 35 collisions, (right) stable periodic orbit after 1000
collisions.

same kind of approach can be used for the computation
of the other expectation values. Using the index displace-
ment transformations and central differences, the gradient
evaluated at the point u(i, j) can be expressed as

(
�∇Ψ

)
u
=

1

2

(
Ψu+(t)−Ψu−(t)

δx
,
Ψu+

(t)−Ψu−(t)

δy

)
,

(21)
then, the mean value for momentum takes the form

〈�̂p(t)〉 = �
i

lim
δ2�r→0

∑
u∈D

Ψu(t)
∗
(
�∇Ψ

)
u
δ2�r. (22)

The real and imaginary part of Eq. (6) are given by

〈�̂p(t)〉 = � lim
δ2�r→0

∑
u∈D

[
�∇,Ψ

]
u
(t)δ2�r

and
lim

δ2�r→0

∑
u∈D

{
�∇,Ψ

}
u
(t)δ2�r = 0 (23)

respectively. In Eq. (23) the following expressions were
used

[
�∇,Ψ

]
u
(t) := Re [Ψu(t)] Im

[(
�∇Ψ

)
u
(t)

]

−Im (Ψu(t)] Re
[(

�∇Ψ
)
u
(t)

]

and

{
�∇,Ψ

}
u
(t) := Re [Ψu(t)] Re

[(
�∇Ψ

)
u
(t)

]

+Im [Ψu(t)] Im
[(

�∇Ψ
)
u
(t)

]
.

The imaginary part of 〈p̂(t)〉 is zero, then, we can use the
second part of Eq. (23) to check the accuracy of the numer-
ical solution. Similarly, for the mean value of the squared

momentum we find

〈�̂p 2(t)〉 = −�2 lim
δ2�r→0

∑
u∈D

{
�∇2,Ψ

}
u
(t)δ2�r (24)

with
lim

δ2�r→0

∑
u∈D

[
�∇2,Ψ

]
u
(t)δ2�r = 0

where the Laplacian at the point u(i, j) is

(
�∇2Ψ

)
u

=
Ψu+(t) + Ψu−(t)

δx2
+

Ψu+(t) + Ψu−(t)

δy2

−2(δx−2 + δy−2)Ψu(t).

Finally, the average of an arbitrary function of the position
f(�̂r) can be written as

〈f(�̂r)〉(t) = lim
δ2�r→0

∑
u∈D

| Ψu(t) |2 fu. (25)

The time evolution of the expectation values of position
for a system prepared in a well localized initial state at
�ro = (xo, yo) using a Gaussian wave packet

〈�r | Ψ(0)〉 = e
− (x−xo)2

4σ2
x

− (y−yo)2

4σ2
y

+i(κxx+κyy)

2πσxσy
(26)

is shown in Fig. 15. �κ = (κx, κy) is the wave vector, σx

and σy are the standard deviations along x and y, respec-
tively. As shown in Fig. 16, the wavepacket is destroyed
after few collisions. However, this is not a consequence of
the chaotic behaviour of the classical counterpart of the
system. This irregular dynamics can be attributed to the
non-coherent preparation of the initial state. This can be
checked in the time evolution of the uncertainty products.
The system must be prepared in a coherent state in order
to reduce the uncertainty products to their minimum value
�/2. Nevertheless, even for simple cases (such as a parti-
cle in a rectangular domain) we do not have an analytical
expression for the coherent states.
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Figure 15: Gaussian wave packet evolution. (Top). (left) Initial state. (right) Uncertainty products: ∆x∆px (solid
line) and ∆y∆py (dashed line). The dot dashed line is the minimum uncertainty value ∆x∆px = �/2 (dot-dashed
line). (Bottom). Trajectory of the position operator expectation values.

Classically, the chaotic behaviour of a specific system
often emerges from the nonlinear nature of the system.
Nevertheless, the classical and quantum billiards are an
exception to this rule because of the absence of nonlin-
ear terms in the equations that govern the dynamical be-
haviour of them. Indeed, the difficulty for quantum chaos
determination does not lie in this lack of nonlinearity. The
problem resides in the difficulty to find a correspondence
between the classical and quantum behaviour far from the
classical limit when the classical system evolves chaotically.
The question is not solved by simply showing that the sys-
tem satisfy the Bohigas-Giannoni-Schmit conjecture be-
cause the nearest neighbor spacing distribution is just a
semiclassical result. The analysis of the time evolution of
the expectation value of the position operator is an alter-
native to study the correspondence between the classical
and quantum systems in the irregular regime. However,
this approach frequently is not successful because quantum

systems evolve in a non-coherent way when their classical
counterparts are chaotic. For this reason sometimes the
sensibility of quantum Hamiltonian systems is studied by
perturbing the Hamiltonian instead of changing the initial
state [46].

7 Concluding remarks

The classical and quantum DSRC billiard was studied
through some quantities. In particular, we calculate the
entropy, the Lyapunov exponent and some trajectories for
the classical problem. The chaotic behaviour for the clas-
sical system emerges even for values of ξ close to one where
the shape of the billiar is quite similar to an regular equi-
lateral triangle. The entropy and the Lyapunov exponent
grow when a half of stadium is introduced in one side of
the triangular billiard. If the control parameter is set far
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Figure 16: Probability density distribution of the billiard prepared in a Gaussian wave packet. The packet was initially
placed in �ro = (−R, 0). The wave vector was pointed to π/4 rad respect the x-axis. Classically, the particle should
describe the 4-periodic orbit shown in Fig. 14; nonetheless, after the second collision the corresponding state is highly
delocalized. The particle tends to remain on a bouncing ball state after the second collision (see Fig. 13-(f)); however,
the next collisions increase the delocalization and the evolution turns non-coherent.

enough from one, for example in the interval 0.8 ≤ ξ ≤ 1,
then the entropy practically is a 70% of Smax. This en-
tropy value is relatively far from its maximum because the
DSRC billiard does not have dispersive frontiers as other
billiards, e.g. Sinai billiard. Nonetheless, it is enough to
ensure a great irregularity in the classical trajectories.

The finite difference method provides an alternative ap-
proach to solve the quantum problem. The DSRC shape
billiard has a mirror reflecting symmetry. Because of this,
the energy levels split in two different symmetry classes ac-
cording to the wavefunction parity. As consequence, P (s)

for the complete billiard is given by a GOE2 distribution.
If DSRC billiard is desymmetrized, then the level statistics
follows a GOE distribution. On the other hand, the classi-
cal behaviour is regular when the control parameter is set
to one. Consequently, for ξ = 1 the distribution of energy
levels is Poissonian for the quantum billiard. Therefore,
the results are according to the Bohigas-Giannoni-Schmit
conjecture.

We found scarred states in the quantum DSRC billiard,
as well as bouncing ball states with their corresponding
classical stable periodic orbits. These results agree with
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those reported previously for other Hamiltonian systems.
In the last section, a practical method to compute the time
evolution of the state vector was described. This method
uses the lattice discretization along with the finite differ-
ence approach.
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Appendix: The finite difference
method

For simplicity we start with a rectangular domain. The
discretization of the domain is shown in Fig. 17-left. A
point at the position �rij can be labelled in one of these
ways, with pair (i, j) or by using a single index u. The
second option is used in order to avoid the impractical use
of four indices in the Hamiltonian matrix. It is easy to
build a single-valued function u = u(i, j) which maps the
pair of indices (i, j) to the index u. We refer to this proce-
dure as first indexing. The time independent Schrödinger
equation is evaluated at the point u(i, j) according to

− �
2m

�∇2ψ(�r)

∣∣∣∣
u(i,j)

+ V (�r)ψ(�r)|u(i,j) = E ψ(�r)|u(i,j) .

(27)
As usual, the second derivatives of the Laplacian are eval-
uated using central differences [34]

∂2ψ

∂x2

∣∣∣∣
u(i,j)

≈ 1

δx2

[
ψu(i+1,j) + ψu(i−1,j) − 2ψu(i,j)

]

and

∂2ψ

∂y2

∣∣∣∣
u(i,j)

≈ 1

δy2
[
ψu(i,j+1) + ψu(i,j−1) − 2ψu(i,j)

]
.

The notation can be simplified defining

u± = u (i(u)± 1, j(u)) and u± = u (i(u), j(u)± 1) .
(28)

Note that u± and u± give horizontal and vertical displace-
ments from the point (i, j) on the lattice, respectively. Us-
ing this notation, Eq.(27) can be written as

∑
v∈D

Huvψv = Eψu

where Huv is the discrete version of the Hamiltonian. Ex-
plicitly, Huv is given by

Huv = − �2

2m

[
δu+,v + δu−,v

δx2
+

δu+,v + δu−,v

δy2

−2δu,v(δx
−2 + δy−2)

]
+ Vuδu,v (29)

Note that repeated indices in the last term of Eq. (29) do
not involve sum over them. For points along the boundary
∂D, we performed a second indexing (see Fig. 17-right).
For these points, the eigenvalue equation can be written
as

∑
v∈D

Huvψv =

Q=M ′×N ′∑
β=1

Hu(α)v(β)ψv(β) = Eψu(α). (30)

The eigenvalues and eigenvectors of the Hamiltonian Hαβ

are obtained numerically. Commonly, the packages of ma-
trix diagonalization arrange the eigenvectors in a matrix,
let us call it Mαβ with α, β = 1, . . . , Q. If the eigenvec-
tors are arranged in the columns of such matrix, then

the state s evaluated at the point α is ψ
(s)
α = Mαs with

(s = 1, 2, . . . , Q). In order to return to the initial labelling

we write ψ
(s)
ij = Mα(i,j),s if �rij ∈ D, 0, otherwise. The

generalization to billiards with different shapes does not
represent considerable difficulties. It is possible to place
the boundary of the billiard over a rectangular grid and
take into account only the points inside of ∂D. After
the identification of the boundary points, the inner points
(say Q inner points) are enumerated first (u = 1, 2, ..., Q).
Once this procedure is accomplished, the points along the
boundary are enumerated. Some grids with different val-
ues of Q for the DSRC billiard are shown in Fig. 18.
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Figure 17: First and second indexing. (left) The domain is discretized in a rectangular lattice of M × N points in-
cluding the boundary (the points out the solid rectangle). Each point (i, j) is labelled by the single index u. (right)
Here only the inner points are indexed, we build the map α = α(i, j), inversely the pair (i, j) is obtained by i = i2(α)
and j = j2(α). The points of the two indexing are related by u = u(i, j) = u (i2(α), j2(α)). The total number of inner
points is Q = M ′ ×N ′

Figure 18: The grid. As the density of points is incremented, the mesh is better adjusted to the geometry of the
billiard. Some grids for ξ = 0 are shown, the number of inner points are: (left) Q = 32, (center) Q = 1108 and (right)
Q = 4618.
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