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Abstract
We study cosmological solutions for a scalar field minimally coupled to the curvature, in the 
framework of holographic dark energy. Phantom solutions can be obtained without introducing 
ghosts’ degrees of freedom, and the autonomous system contains stable accelerated expansion 
solutions and de Sitter attractors. For the non-minimally coupled scalar field the special case of the 
conformal coupling is analyzed, and it is shown that dynamically evolving scalar field produces the 
effect of the cosmological constant.
Keywords: Dark Energy; Holographic Principle; Scalar Field

Resumen
Se estudian soluciones cosmológicas para un campo escalar acoplado mínimamente a la curvatura, 
en el marco del principio holográfico. Se pueden obtener soluciones phantom sin introducir grados 
de libertad fantasma, y el sistema autónomo contiene soluciones de expansión acelerada estables 
y atractores de Sitter. Para el campo con acoplamiento no-mínimo se analiza el caso especial del 
acoplamiento conforme y se demuestra que un campo escalar que evoluciona dinámicamente puede 
producir el efecto de la constante cosmológica.
Palabras Clave: Energía Oscura; Principio Holográfico; Campo Escalar 

Introduction
The current accelerated expansion of the universe (Riess, et al., 1998), (Perlmutteret 
al., 1998), (Kowalski, et al., 2008), (Hicken, et al., 2009), (Ade, et al., 2016), supposes 
a great challenge for the contemporary science. The source of this expansion, called dark 
energy, may consist of cosmological constant, conventionally associated with the energy 
of the vacuum or alternatively, could came from a dynamical varying scalar field at late 
times which also account for the missing energy density in the universe. In order to avoid 
the fine tuning and the coincidence problems, which relate to the inflationary behavior 
of the early universe and the late time dark energy dominated regime, the dark energy 
should have dynamical nature. This stimulates the interest in scalar fields that naturally 
arise in particle physics, including string theory, supergravity and generalized gravity 
theories such as the scalar tensor theories of gravity. So far a wide variety of scalar field 
models of dark energy have been proposed, including quintessence (Ratra and Peebles, 
1988), k-essence (Armendariz, et al., 2000), tachyon (Padmanabhan and Choudhury, 
2002), phantom (Caldwell, 2002), ghost condensate (Arkani-Hamed, et al., 2004) among 
others. The quintessence is an ordinary scalar field minimally coupled to gravity, with 
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particular potentials that lead to late time accelerated expansion. The equation of state 
for spatially homogeneous scalar field satisfies the inequality w < -1, and therefore can 
produce accelerated expansion. According to the current observational data (Riess, et al., 
1998), (Perlmutter, et al., 1998), (Kowalski, et al., 2008), (Hicken, et al., 2009) , (Ade, 
et al., 2016), the dark energy equation of state could be in a narrow region below the 
cosmological constant divide w = -1, i. e. w < -1, indicating that accelerated expansion 
is going through a phantom phase. Therefore, the quintessence field may not be adequate 
to describe the state of accelerated expansion of the universe and models which allow the 
phantom phase seem more suitable. 

Among the models of dark energy, especially interesting is the scalar field model 
non-minimally coupled to curvature, which normally arises in quantum field theory in 
curved space time (Ford, 19987, Birrell and Davis, 1982) or after compactification of 
higher dimensional gravity theories and in the context of string theories. These kinds of 
couplings have been proposed by many authors to address the dark energy problem since 
these couplings provide in principle a mechanism to evade the coincidence problem, 
allow phantom crossing in some cases (Perivolaropoulos, 2005). A dynamical system 
for non-minimally coupled scalar field was studied in (Sami, et al., 2012), and in 
(Granda and Jimenez, 2017, Granda and Jimenez, 2018), the autonomous system 
analysis was studied for models with non-minimal Gauss-Bonnet and non-minimal 
kinetic couplings respectively. 

Another interesting approach to explain the nature of the dark energy is based on some 
facts of quantum gravity known as holographic principle (‘t Hooft, 1993), (Susskind, 
1994), (Bousso, 1999). This principle establishes a connection between the short distance 
(ultraviolet) cut-off and the long distance (infrared) cut-off, given by a restriction on the 
size of the system in such a manner that prevents the formation of black holes with size 
larger than the size of the system (Cohen, et al., 1999), (Hsu, 2004). Applied to the dark 
energy issue, if we take the whole universe into account, then the vacuum energy related to 
this holographic principle is viewed as dark energy, usually called holographic dark energy. 
Based on this principle, the proposal of holographic dark energy have been developed in 
(Cohen, et al., 1999), (Hsu, 2004), (Li, 2004). Different IR cut-off scales such as Hubble 
scale, particle horizon and event horizon have been proposed to establish the holographic 
dark energy models. The Hubble scale can not give rise to an accelerated universe (Hsu, 
2004), while the event horizon can produce an accelerated expansion (Li, 2004), but has 
problem with causality. A Holographic density model that is free of causality problem 
can explain the coincidence problem was presented in (Granda and Oliveros, 2008), 
(Granda and Oliveros, 2008a).

In this work we consider the scalar field in the framework of the holographic principle 
as proposed in (Granda and Oliveros, 2008), with the holographic density as the back-
ground vacuum energy and analyze the possible accelerating regimes that could take 
place under the effect of a scalar field in the framework the holographic principle. The 
non-minimal coupling in the framework of holographic principle has been studied in (Ito, 
2005), (Setare and Saridakis, 2008). It should be said that such extension of the scalar 
field in the frame of holographic principle needs further theoretical foundation related with 
the microscopic nature of the vacuum energy. 

The scalar field in the framework of the holographic principle 
Let us consider the simplest model of non-minimally coupled scalar field with potential in 
the presence of holographic dark energy (vacuum energy). The action for the scalar field 
with matter in a general background is given by 

1
2ϰ2

1
2           (1)

where ϰ2 = 8πG, Sm is the action for the matter fields which in the present case includes the 
usual baryonic and dark matter. Initially we consider the limit of dark energy dominance 
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and neglect the baryonic and dark matter contribution. We are considering the flat 
Friedmann-Robertson-Walker (FRW) metric with signature (-,+,+,+). The Friedmann 
equation including the energy contribution from the holographic principle [40] is

κ2

3
1
2              (2)

where
                      (3)

and ρΛ is the energy contribution from the holographic principle. The equation of motion 
for the scalar field is given by

            (4)

and the effective equation of state resulting from the time evolution of this model is
   (5)

Quintessence Solutions
To solve the equations (2) and (4), we can propose the following functions

           (6)
Replacing these expressions in (2) it is found that under the restriction

λφ0 = -2,
the following relation takes place (here we use ϰ2= Mp

2)
 3Mp

2 [(1 - α) p2 + βp] =  φ0
2 + t0

2 V0       (7)
And from the equation of motion (4) one finds

           (3p - 1) φ0
2 - 2t0

2 V0 = 0.               (8)
The last two equations give us the initial values  and  in terms of the parameters

          φ0
2 = 2Mp

2 [(1 - α) p + β],               (9)
and 

 t0
2 V0= Mp

2 (3p - 1) [(1 - α) p + β].         (10)
The scalar field and the potential keep the same functional dependence on time as in 

the simplest case of the canonical scalar field on FRW background with the advantage, in 
the present case, that there exist phantom solutions (leading to BR singularities) without 
resorting to ghost degrees of freedom. Using the initial value φ0 one finds the power p as

             .                   (11)

In absence of scalar field this equation gives the usual restriction for accelerated 
expansion [40], β > α - 1, and with the scalar field the Eq. (11) gives more possibilities 
including negative values of p leading to super acceleration, depending on the relation 
between φ0 and Mp. Thus, the conditions for accelerated expansion (p > 1) take the form

  (12)
or

   (13)

where γ = φ0/Mp. Note that these conditions take place whether γ is greater than or less 
than 1.

Big Rip solutions
Let’s consider the following solutions

            (14)

with q > 0, which lead to Big Rip singularity at t = tc. Replacing (14) in the Eqs. (2) and (4) 
one finds the same restriction, λ = -2/φ0, and the relations
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           (15)

and
           (16)

and the expression for q in terms of φ0 is given by

   (17)

where γ = φ0/Mp. The effective equation of state from (5) takes the value

  
From (15) and (16) follows that, given q > 0, we don’t need to resort to ghost degrees 

of freedom, since  > 0 whenever (1 - α) q - β > 0, which implies that V0 > 0. Thus, the 
standard canonical scalar field in the vacuum background generated by the holographic 
principle can describe an accelerated expansion with EoS bellow the phantom divide, 
i.e. weff < -1.

The matter contribution and critical points
In this case the cosmological equations take the form

       (18)

      (19)
with the scalar potential given by

V = V0eλφ      (20)
where ρm and ρm are the density and pressure of the matter contribution respectively 
(baryonic and dark matter), pΛ is the pressure corresponding to the vacuum energy. 
Both type of energy contributions are modeled by ideal fluids that obey the independent 
continuity equations

            (21)
additionally, we have the equation of motion for the scalar field given by (4) which is not 
independent of (18) and (19). Here we assume that the equation of state for matter, wm 
= ρm/ρm is constant, which allows the integration of the conservation equation, giving ρm 

= ρm0 a-3(1 + wm). To understand some dynamical properties of the model we will consider 
the autonomous system and analyze the properties of the critical points. The dynamical 
variables can be deduced from (18) and will be defined as

                    (22)

which lead to the following restriction from Eq. (18)
                          x2 + y2 + Ωm+ ΩΛ = 1                                      (23)

and from Eqs. (4), (19) and (21), it is straightforward to derive the following
equations

           (24)

                   (25)

where N = ln a  is the slow-roll variable and γ = 1 + wm. Note that if one sets α = β = 0, then 
the Eqs. (21)-(25) reduce to the autonomous system for the uncoupled quintessence scalar 
[33]. The effective equation of state is given by

                            (26)
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The following are the fixed points of the dynamical system (23)-(25).

     

( (
( (

( (
( (
( (

( (

    (27)

where

   (28)

By setting α = β = 0  we recover the critical points corresponding to the minimally 
coupled scalar field. The critical points characterize different cosmological scenarios, 
depending on the parameters α, β, γ, λ. Here we illustrate some cases that involve the 
effects of the holographic density:

The point P1: 
The corresponding eigenvalues are

(  ).
If we take α = 1, then weff = -1 and Ωm = 0. Then the energy becomes dominated by the 

holographic component and the point is a de Sitter solution with eigenvalues (0,-3), which 
corresponds to marginally stable fixed point. On the other hand, if we take α = 3βγ/2, then 
weff = γ - 1 = wm with the energy density dominated by matter Ωm = 1, and eigenvalues

( ),
which corresponds to a saddle point for 0 < γ < 2. The case α = β = 0, which corresponds to 
the standad quintessence scalar, gives the known matter dominated solution (Ωm = 1) with   
weff = wm [33]. In this last case the eigenvalues become  giving a saddle point for 
1 < γ < 2  . The de Sitter solution in this point is due to the holographic component.

The point P2: 
The eigenvalues are

( ).
If we take α = 3β, then Ωm = 0 and the solution becomes dominated by the scalar field 

(Ωφ = 1) and is stable only under the conditions  . Note that  
weff = 1 for any value of the parameters, including the case of the quintessence scalar field 
corresponding to α = β = 0  (P2 = (-1,0), giving also Ωm = 0), with the eigenvalues given by 
( ), which lead to unstable (λ > -6) or saddle point (λ < -6) for 0 < γ < 2. 
The difference between these two cases is that the inclusion of the holographic component 
can lead to stable fixed point. There is also a stable solution dominated by matter (Ωm = 1, 
Ωφ + ΩΛ = 0)  if one sets 
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In this case the scalar field and holographic contribution cancel each other, which is 
not of interest since one of these density parameters should be negative.

The point P3: his point gives the same results

with eigenvalues

and the stability for the scalar field dominated solution is reached under the conditions 
. The quintessence case (α = β = 0), giving P3=(1,0)) is unstable 

for λ <  and saddle for λ > , given that 0 < γ < 2. The matter dominated solution that 
takes place for γ = 2 (α - 3β + 1), is stable under the restrictions 

The point P4: First we note that for the case , and independently of the other 
parameters (β, γ, λ), weff  = -1 and Ωm = 0, Ωφ = 0, ΩΛ = 1. Due to its complexity to 
calculate the eigenvalues, we analyzed the case γ = 1, and have found that the point is 
an attractor if  for any λ ≠ 0. This de Sitter attractor is due exclusively to the 
holographic component. For the quintessence scalar field α = β = 0, the fixed point takes 
the values P4  giving the stable scaling solution with weff  = wm for λ2 

> 3γ. One case of quintessence solution takes place if one sets α = β = 2/λ2. In this case 
we find   with Ωm = 1 - 2/λ2, Ωφ = , ΩΛ = 

. This point is an attractor with 0 < Ωm, Ωφ, ΩΛ < 1 and -1 < weff  < 
0 if  and 0 < γ < λ2/3. Another stable quintessence solution is obtained by 
taking α = γ/3 and β = 2/λ2, giving . This point is an 
attractor with 

where all the density parameters are in the interval 0 < Ωm, Ωφ, ΩΛ < 1 whenever  
and  and .

The point P5 as in the case of the point P4 contains a de Sitter attractor (weff  = -1) 
dominated by the holographic component (ΩΛ = 1) for α = 1, and the stability results from 
the restriction γ = 1 and β > 2/3 (λ2 + 3) for any λ ≠ 0. This critical point contains also the 
quintessence solutions described for the point P4 with the same stability properties.

The point P6: For the scalar quintessence field, taking α = β = 0, this critical point 
takes the values P6  and becomes stable node dominated by the scalar field with 
weff  = -1 + λ2 /3, provided that λ <  and γ > λ2 /3. By setting α = 1 in this point we find 

This point satisfies all the conditions for an attractor solution with accelerated 
expansion, but the analytical expression for the conditions on the parameters are very 
large and we limit ourselves here to the two numerical examples: taking λ = √6, β = 0.9, 
γ = 1.05, it is found weff  = -0.785, Ωm = 0.18, Ωφ = 0.11 and ΩΛ = 0.71. Taking λ = 3 √3,               
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β = 0.7, γ = 1.065, one finds weff  = -0.999, Ωm = 0.0007, Ωφ = 0.00008 and ΩΛ = 0.999. The 
above expressions for the main physical parameters simplify if one sets β = 2/λ2. In this 
case we obtain 

weff  = -1 + λ2/3, Ωm = 0, Ωφ =1, ΩΛ = 0.
This scalar field dominated critical point is an attractor if 

 .

By taking α = 1 and , this point gives a de Sitter saddle point dominated by 
the holographic component (ΩΛ = 1, Ωm = 0, Ωφ = 0) with eigenvalues (-3,0).

The point P7 presents the same properties as the point P6, leading to stable de Sitter 
and quintessence attractors.

Non-minimal coupling in the framework of the holographic 
principle

Here we assume the generalization of the holographic principle in the presence of 
non-minimally coupled scalar field. Let us start with the following action for a dark energy 
dominated universe

         ,              (29)

Variation with respect to the metric, and assuming that the scalar field φ has only          
time dependence, gives the following modified Friedman Eqs. in the flat FRW background 
[44, 45].

           ,                (30)

which corresponds to the (00) component of the variation with respect to the metric, and 
for the (11) component it is obtained

,  (31)

where H is the Hubble parameter, and ,  are the energy density and pressure of the 
holographic dark energy. The equation of motion of the scalar field is the modified Klein-
Gordon equation

. (32)
Replacing the holographic density (3) in (3), leads to the following Friedmann equation

. (33)

Although the above equations may include the potential, in this case we show that the 
effect of accelerated expansion can be obtained without the need to introduce a potential. 
Due to the non-minimal coupling from (30), the effective gravitational coupling can be 
expressed as

                                  ,                              (34)

where G is the constant Newtonian coupling. The relative time variation of the gravita-
tional coupling, obtained from (34) is given by

                               .                             (35)

An appropriate solution of the equations (32) and (33) should give the relative variation 
of the gravitational coupling consistent with current observational bounds. 

The equation (33) simplifies under the restriction α = 1, and has an exact solution for 
the scalar field for H = H0 = const., corresponding to de Sitter expansion with weff  = -1. 
Setting α = 1 and H = H0 the equations (32) and (33) become 

                     ,                       (36)

                          .                           (37)
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If one assumes the scalar field of the form
                                        ,                                     (38)

then, the Eqs. (36) and (37) have two solutions corresponding to 
                                  (39)

Of special interest is the solution with ξ = 1/6 corresponding to the conformal coupling 
of the scalar field. This de Sitter solution is not possible in absence of the holographic energy 
density. So, the non-minimally coupled scalar field in the framework of the holographic 
energy density can produce the same effect as the cosmological constant, leading to a de 
Sitter expansion when the coupling constant takes the conformal value ξ = 1/6 and the 
scalar field evolves as . 

For the solution (38), and using Eq. (35) we find the current value of  as 

                      .                   (40)

Here we used  (  is the Planck mass) and H0 is the current value of the 
Hubble parameter. For the case of the conformal coupling ( ), if we take 

 and , then the relative variation of  , the gravitational 
coupling is of the order of  , clearly satisfying the observational bounds. 

Discussion 
In the present work we considered the usual canonical minimally coupled scalar field with 
an additional source, given by the vacuum energy, modeled by the holographic density 
(Granda and Oliveros, 2008). It was found that, under exponential potential, in the 
vacuum background generated by the holographic principle, the model admits the same 
solutions of the minimally coupled scalar field for the power-law expansion, with the 
advantage that in the present case additionally appear phantom solutions (leading to future 
Big Rip singularities) without resorting to ghost degrees of freedom. In presence of matter 
with constant equation of state wm, the model presents a rich variety of critical points that 
give de Sitter attractors, stable quintessence solutions and saddle points. Thus for instance, 
the point P1 contains a de Sitter solution dominated by the holographic component, with 
marginal stability due to the eigenvalues (0,-3). This point also contains matter dominated 
solution with weff  = wm which is a saddle point as in the case of absence of the holographic 
component. The point P4 contains a de Sitter attractor dominated by the holographic 
component, and also contains stable quintessence (-1 < weff < 0) solutions where all the 
energy components contribute.

The point P6 contains attractor solutions with accelerated expansion where the 
different components can give contributions to the energy density, and also contains a 
scalar field dominated solution which is a stable node with accelerated expansion. The de 
Sitter solution for this critical point is dominated by the holographic component and is a 
marginally stable fixed point with eigenvalues (-3, 0). These results show that the phase 
space of the autonomous system is richer than in the case of minimally coupled scalar field, 
giving rise to more accelerated expansion scenarios.

In the case of non-minimally coupled scalar field, the holographic dark energy as
given by (3), leads to interesting late time cosmological scenario: the model behaves 

as the cosmological constant, giving an exact de Sitter solution with dynamically evolving 
scalar field and without potential in the conformal coupling (ξ = 1/6) regime. 

It is worth doing a further analysis of the dynamical system for the scalar field with non-
minimal coupling, in the framework of the holographic principle, to study its critical points 
and check if there are critical points with phantom behavior since, according to current 
observations, the equation of state of the dark energy could be below the cosmological 
constant divide. It would be also of interest to analyze the dynamical system of the scalar 
field, model (1)-(3), with a potential different from exponential, for instance with power-
law potential.
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