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Abstract
In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do 
is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost 
of solving this equation grows exponentially with the number of electrons and for more than ~100 
electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) 
equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using 
the electronic probability density as the central variable without having to calculate the Schrödinger 
wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number 
of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even 
the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based 
exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the 
main variables, we discuss here how new methods can be developed that scale linearly with N while 
providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules? 
Keywords: Density functionals; Electronic structure; Chemical reactivity.

Resumen
En cierta forma, la mecánica cuántica da solución a todos los problemas de la química, lo único 
que hay que hacer es resolver las ecuaciones de Schrödinger para las moléculas de interés. 
Desafortunadamente, el costo computacional de resolver estas ecuaciones crece exponencialmente 
con el número de electrones y para más de ~100 electrones resulta imposible resolverlas con 
precisión química (~2 kcal/mol). Las ecuaciones de Kohn-Sham (KS) de la teoría del funcional de 
la densidad (density functional theory, DFT) permiten reformular las ecuaciones de Schrödinger 
usando la densidad de probabilidad electrónica como la variable central sin necesidad de calcular 
las funciones de onda de Schrödinger. El costo de resolver las ecuaciones de Kohn-Sham solo crece 
como N3, donde N es el número de electrones, lo que ha llevado a la inmensa popularidad de la DFT 
en química. A pesar de esta popularidad, incluso las aproximaciones más sofisticadas de las KS-DFT 
llevan a errores que limitan el uso de métodos basados exclusivamente en la densidad electrónica. 
En este artículo se discute cómo pueden desarrollarse nuevos métodos que escalen linealmente con 
N usando  densidades de fragmentos como las variables principales en lugar de densidades totales, 
así como la forma en que estos métodos proveen una respuesta atractiva a la pregunta del subtítulo: 
¿cuál es la forma de los átomos en las moléculas?
Palabras clave: Funcionales de la densidad; Estructura electrónica; Reactividad química.

Introduction
“What is the shape of atoms in molecules?” is a question without an answer. Atoms in 
molecules do not have a real, independent existence. When we say that a water molecule 
has two hydrogen atoms and one oxygen atom, what we mean is that an appropriate supply 
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of energy can split the molecule into these three atoms. Each of these atoms, when isolated, 
is spherical, but the ground-state electronic density of the water molecule is not simply 
the sum of three spheres. However, it is approximately equal to the sum of three spheres 
(Figure 1) and can be written exactly as the sum of three distorted spheres. Thus, the 
question of the title may be vague, but it is not meaningless. All molecular information 
(i.e., what makes a molecule different from the simple sum of its isolated constituents) is 
coded into a set of atomic density distortions.

There is no unique way of defining these atomic density distortions. In fact, there are 
infinitely many ways in which one can decompose a given molecular density n (r) into 
the sum of atomic-like functions nα (r) (here we use the subscript α to label atoms). For 
example, Bader’s partitioning (Bader, 1990) based on the topology of the electron density 
is a popular choice with merits and limitations that have been amply discussed (Nalewajski, 
et al., 2000). In spite of the many possible definitions of atomic densities, there is a unique 
set of densities {nα (r)} that sum up to n (r) while minimizing the sum of the atomic energies. 
It is this special set of densities to which we turn our attention in this article.  

The density functional theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 
1965) establishes that any electronic property P of a molecule is a functional of its ground-
state electronic density P = P[n]. The uniqueness of the set {nα (r)} for a given density 
allows one to understand molecular properties, in principle, as functionals P = P[{nα (r)}] 
of that set. Decades of research in DFT have taught us how the total density n (r) can be used 
as the main variable in molecular calculations, as explained briefly in Section II. Our group 
is investigating how the atomic densities, as opposed to the total molecular density, may 
be used as the main variables, which we discuss in Section III. This change of perspective 
has advantages and disadvantages. The most obvious advantage is a significant lowering of 
the computational cost of the calculations because instead of having to solve the N-electron 
Schrödinger equation (a second-order differential equation on 3N coupled variables), only 
a small number of independent equations has to be solved, each for less than N electrons. 
A second advantage will be explained and illustrated in Section IV: By focusing on atomic 
densities rather than on total molecular densities, one can fix pervasive errors of density 
functional approximations and significantly improve the accuracy of certain calculations. 
A third advantage will be discussed in Section V: The chemical reactivity between two 

Figure 1. Ground state density of a water molecule on the plane of the three atoms. Calculated using 
Psi4 (Smith, et al., 2018) (Parrish, et al., 2017) with CCSD(T)/UGBS. The dotted line indicates a 
density iso-contour.
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atoms or molecular fragments that approach each other is best described in a theory that 
employs atomic (or fragment) densities as the main variables. On the downside, many of 
the theorems and techniques that have been explored over the last six decades to describe 
molecular systems are not directly applicable to the new set of variables, so entirely new 
methods and approximations need to be developed. A growing community of researchers 
working under the umbrella of embedding methods (Jacob & Neugebauer, 2014; Lee, et 
al., 2019; Sun & Chan, 2015; Nafziger & Wasserman, 2015; Niffenegger, et al., 2019) 
are pursuing this direction. We highlight here some of the recent developments.

The molecular density as the main variable
In the world of quantum chemistry, one is normally concerned with electronic hamiltonians 
given within the Born-Oppeheimer approximation by:

                       (1),
where  is the kinetic energy operator for N electrons,  the electron-electron repulsion 
operator, v(r) the attractive potential generated by the nuclei, and  the density operator. 
The expectation value of the latter in the N-electron ground state ψ is the density n(r) = ⟨ψ|

|ψ⟩, but an accurate, explicit representation of ψ is unachievable for all but the smallest 
systems. Ground-breaking work by Kohn, et al. (Hohenberg & Kohn, 1964; Kohn & 
Sham, 1965) showed that it is possible to construct a theory that completely circumvents 
the calculation of ψ so that any property, such as the ground-state energy E = ⟨ψ| |ψ⟩, 
can be calculated as a functional of the density. The functional E[n] is normally split into 
the contribution from the nuclear potential ∫ drn (r) v(r), and a universal functional F[n] 
independent of v(r). In Kohn-Sham-DFT (KS-DFT), the most common formulation of 
DFT, the functional F[n], is decomposed as:

                   (2),

where Ts[n] is the kinetic energy for an auxiliary system of non-interacting electrons 
with density n(r), the second term is the Hartree energy, and EXC[n] is the exchange-
correlation (XC) energy functional, the only quantity that needs to be approximated in 
practical calculations. We sometimes combine the Hartree and the XC-contributions into 
one functional, EHXC[n], whose derivative with respect to the density is a potential, vHXC (r) 
= δEHXC[n]/δn(r). What one solves in practice are the KS equations:

                                        (3),
with vs(r)= v(r) + vHXC (r) leading to ∑i |ϕi(r)|2 = n(r) where the sum goes over the occupied 
orbitals ϕi(r). An ample literature exists documenting the successes and failures of different 
approximations to EXC[n]. We point the reader to recent reviews (Pribram-Jones, et al., 
2015; Wasserman, et al., 2017; Yang, 2012) and stress that some of the most pervasive 
failures of approximate KS-DFT appear when stretching chemical bonds (Dutoi, et al., 
2016; Makmal, et al., 2011; Komsa & Staroverov, et al., 2016). The large errors observed 
in these cases encompass both fractional-charge (or delocalization) and fractional-spin (or 
static correlation) errors (Cohen, et al., 2008a; Cohen, et al., 2008b; Mori-Sánchez, et 
al., 2008), which are ultimately due to the inability of the approximate XC-functionals to 
reduce the molecular density to the correct atomic densities (or spin-densities) when bonds 
are stretched. We illustrate both types of errors below for the local density approximation 
(LDA), the simplest and earliest approximation for EXC[n] on which the modern ladder of 
approximations is built (Perdew, et al., 2001).

Fractional-charge error 
Consider stretching . The true ground-state density has left-right symmetry, with 1/2 
electron on the left atom and 1/2 electron on the right atom. The physical state at infinite 
separation must break this symmetry and produce a neutral hydrogen atom on one side 
and a bare proton on the other. Both solutions (broken-symmetry and symmetric) should, 
therefore, have the same energy at infinite separation, but this feature is not achieved by 
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the LDA or other approximations built upon it. The LDA energy of an H atom with half an 
electron is much lower than what it should be (half the energy of infinitely stretched ), 
which leads to the incorrect binding shown in dashed pink in figure 2.

Fractional-spin error 
Now consider stretching neutral H2. The issues of the previous paragraph are no longer 
a problem because each atom has exactly one electron at infinite separation. However, 
an analogous problem arises for fractional spins. The true-ground state of H2 is spin 
unpolarized and must remain so at very large separations in the absence of environmental 
perturbations. Yet, an isolated H atom is spin-polarized so the energy of two spin-polarized 
H atoms should be identical to that of two spin-unpolarized H atoms (each having half-spin 
up, half-spin down). This condition is again violated by the LDA leading to the significant 
overestimation of the binding as shown in dashed pink in figure 3.

These errors, illustrated here for the two simplest open-shell and closed-shell molecules, 
are ubiquitous in quantum chemistry. Every time a bond is stretched, as in transition states 
along chemical reactions, a combination of these errors can creep into and contaminate the 
DFT calculations. Cancellation between the two errors can occur sometimes (note they 
have opposite signs) and lead to accidentally accurate results for complex systems, but 
predicting such cancellations is generally extremely difficult and not something DFT users 
want to or should rely on. Results from approximate KS-DFT calculations are thus often 
suspect. A theory that uses atomic densities as the main variables, as opposed to the total 
molecular density, has the potential to fix such errors. Furthermore, it has the potential to 
provide information about individual atomic density distortions along with a chemical 
insight into the reactivity of individual fragments.

Figure 2. Electronic binding energy of H2
+ . Exact (solid, blue), KS-LDA (dashed, pink), and OA-

LDA(dash-dotted, yellow) from (Nafziger, 2015), as explained in Sec.IV. 

Figure 3. Electronic binding energy of H2. Exact (solid, blue), KS-LDA (dashed, pink), and OA-
LDA (dash-dotted, yellow) from (Nafziger&Wasserman, 2015), as explained in Sec.IV.
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Atomic densities as the main variables
As mentioned in the Introduction, there is a unique set of atomic densities {nα (r)} that 
minimizes Ef ≡ ∑α Eα [nα] while satisfying the density constraint:

                      ∑α nα (r) = n(r)                                       (4).
The atomic energies Eα [nα] in the above definition of Ef are not true ground-state 

energies but rather given by Eα [nα] = F [nα] + ∫ dr vα(r) nα(r), where vα(r) is the α-atomic 
potential. The constraint of Equation (4) prevents nα(r) from being the ground-state density 
of the corresponding vα(r). However, each of the nα(r) can be shown to be the ensemble 
ground-state density of vα(r) + vp(r), where vp(r) is a unique α-independent potential. More 
specifically, the partition potential theorem (PPT) (Cohen & Wasserman, 2006) establishes 
the following: If a molecular potential v(r) is decomposed into atomic potentials {vα(r)}, 
i.e. v(r) = ∑α vα(r), then, for a set of fragment occupations {nα} there is a unique local 
potential vp(r) such that, when added to the individual vα(r)’s, leads to ensemble ground-
state densities {nα} summing up to the correct total density n(r).

Simple Illustration of the PPT 
Figure 4 provides the simplest illustration of this theorem. Consider first one electron 
moving in the 1D-potential v1(x) (dotted grey line in the middle panel). Its ground-state 
density, when isolated, is n1

(0) (x) (dotted orange line in the upper panel). Similarly, one 
electron in v1(x) has density n2

(0) (x). Now consider two non-interacting electrons in the 
double-well potential v(x) = v1(x) + v2(x) (dashed yellow line in the middle panel). The 
density of this system, n(x), is not equal to n(0)(x) = n1

(0)(x) + n2
(0)(x), but it is close to it: n(x) 

≈ n(0)(x), especially if v1(x) overlaps weakly with v2(x). The PPT establishes that there is 
only one potential vp(x) (purple line in the middle panel) such that, when added separately 
to v1(x) (blue line in the lower panel) and v2(x), leads to ground-state densities n1(x) (blue 
line in the upper panel) and n2(x) that differ from n1

(0)(x) and n2
(0)(x) in just the right way, so 

that n1(x) + n2(x) = n(x). The theorem applies to any number of interacting electrons in 3D 
and to any number of fragments (Cohen & Wasserman, 2006).

The algorithm to calculate vp(r)
Several algorithms have been developed to solve the constrained optimization problem 
involved in calculating vp(r) (i.e., minimizing Ef [nα] under the constraint of Equation (4)). 
The algorithm described here is perhaps conceptually the simplest: 

1. Choose an approximation for EXC[n], solve the KS equations in Equation (3) for the 
isolated atoms, and find their self-consistent densities {nα

(0)(r)} and corresponding 
KS-potentials {vs , α(r)}.

2. Build an approximate molecular density as n(0) (r) ≈ ∑α nα
(0) (r).

3. Invert the KS equations to find the effective KS-potential vs
(0)(r) corresponding 

to n(0) (r). For the exact density, this potential would be identical to v (r) + vHXC 

(r), but for the approximate density it is not. The difference between the two, 
therefore, can be used as a correction to generate an improved atomic KS potential 

.
4. Solve the KS equations for the atoms again with the improved atomic KS potential 

and repeat until self-consistency is achieved. If convergence is achieved after 
iterating k times, then the atomic KS potentials  are given by vα(r) + vp(r) 
+ vHXC [nα

(k-1)](r). The partition potential emerges as an α-independent piece to be 
added to the α-nuclear potential. 

Just as for the model system of figure 4, the main feature of vp(r) in real diatomic 
molecules is an attractive well in between the nuclei. The presence of this well distorts the 
density of each isolated atom by pulling it toward the bonding region. There are generally 
also positive plateaus in vp(r) due to kinetic effects (Nafziger & Wasserman, 2014) 
(contributions from the functional derivatives of Ts [nα]) and a singularity at the nuclei 
whose strength is proportional to the value of the density of one atom at the location of the 
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other (Nafziger & Wasserman, 2014), modifying the isolated-atom density of the nuclei 
according to Kato’s cusp condition. This is our partial response to the question without an 
answer: “The shape of atoms in molecules is determined by vp(r).”

Although we exemplify the use of Partition-DFT with systems composed of two atoms, 
it must be noted that the framework is not limited to atomic densities. Any meaningful 
fragmentation can be applied, such as individual molecules in dimers or functional groups. 
This selective fragmentation not only has conceptual benefits but also computational 
because it allows regions to be treated with different levels of theory so that the most 
reactive regions are calculated using higher-level methods, as is the common practice in 
WFT-in-DFT embedding (Lee, et al., 2019). This is consistent with the goal of the theory 
to lower the computational cost while still accurately describing the relevant properties of 
a larger system.

Fixing errors of approximate XC-functionals
Now define the partition energy Ep as the difference between the total energy E and the sum 
of atomic energies Ef. Using a bold n(r) to denote the set of atomic densities, n(r) ≡ {nα (r)},

                                                         (5)
with the KS energy-decomposition of Equation (2), the partition energy is given by:

                              (6),
where the “nad” superscript is used to indicate nonadditive quantities, i.e., the difference 
between the total and the sum of the fragments. Thus, , 

, and the last term stands for the non-additive external 

Figure 4. Graphic example of simplest PPT case for 2 non-interacting electrons in 1D potentials of 
the form v1,2(x) = cosh-2 (x ± a), with a = 2.5. Upper panel: The gray line magnifies the atomic-density 
distortion n1(x) - n1(x)0 by a factor of 5 to highlight what occurs upon formation of the chemical 
bond: The density of the isolated atom is pulled towards the bonding region. Middle panel: Left 
atomic potential v1(x) (dotted), total ‘molecular potential’ (dashed), and partition potential (solid, 
purple). Bottom panel: Comparison of the isolated atomic potential v1(x) and the effective potential  
v1(x) + vp(x) for which the polarized density n1(x) is a ground-state density. 
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(nuclear) energy given by . We have again 
combined the non-additive exchange-correlation and Hartree terms of Equation (2) into  

. For a given approximation to EXC [n], the algorithm described in the previous section 
exactly reproduces the results of the corresponding KS calculation including all of its errors. 
It can be seen (Elliot, et al., 2010) that the partition potential is the functional derivative 
of the partition energy with respect to any of the atomic densities at the minimum. Since 

 is known exactly, the key to improving over Kohn-Sham is to propose adequate 
approximations for the other two components of Equation (6),   and . We 
discuss each of these separately.

Approximating  
The origin of common errors of approximate XC functionals is well understood especially 
for homonuclear diatomic molecules (Cohen, et al., 2008b) (see discussion above for H2 
and H2

+ ) . For these and other molecules composed of two fragments, A and B, we have shown 
how a simple overlap approximation (OA) to  can fix both errors simultaneously 
(Nafziger & Wasserman, 2015), a result that no approximate XC functional can achieve 
with comparable accuracy within KS-DFT. The OA is defined by:

                         (7),
where S[n] is a measure of the overlap between the two atomic densities:

                                                                       (8).
The term  in Eq.(7) is a correction to the non-additive Hartree contribution, 

so that both fractional-charge and fractional-spin errors are suppressed as the molecule is 
stretched (Nafziger & Wasserman, 2015). The results shown in yellow in figure 2 and 
labeled “OA-LDA” go a step further (Nafziger, 2015) and replace  in Equation (7) 
by the non-additive exact-exchange functional canceling completely the self-interaction 
error and leading to the exact Ep[n] in this case. The only deviation from the exact binding 
here is due to the effect that the slightly incorrect LDA fragment densities have on Ep[n]. 
We stress that the correct energy is obtained here as the molecule is stretched without 
symmetry breaking: The ground state of H2

+ 
 retains left-right symmetry and the ground-

state of H2 remains a spin-singlet throughout the entire range of separations. This is a 
proof-of-principle demonstration that it is possible to use a simple functional of the density 
for the atoms (not for the molecule) while approximating   to fix the underlying 
errors due to fragmentation. The route is complementary to the efforts of many others to 
develop sophisticated XC-functionals of the total density (Hedge, 2017; Mardirossian & 
Head-Gordon, 2017; Sun, et al., 2015; Yu, et al., 2016; Zhang,  2018). 

Approximating  
Even with a robust and accurate functional for  (based perhaps on future generaliza-
tions of the OA), an explicit approximation for  is needed if one wants to reach the 
goal of linear-scaling calculations. Step 3 of the algorithm described in Section III relies 
on iterative inversions that make the method computationally impractical (at least, not 
more efficient than regular KS-DFT). The most obvious way to avoid such inversions 
is by resorting to orbital-free DFT (OF-DFT) (Chen, et al., 2016) and approximate 

 as an explicit functional of the set of atomic densities. Kinetic-energy functionals 
are famously difficult to approximate and state-of-the-art functionals are still far from 
reaching chemical accuracy, but we are looking for approximations to the non-additive 
part of , which is altogether a different challenge. The non-interacting kinetic energies 
for the atoms are still calculated exactly via orbitals and we wish to approximate the 
much smaller . Recent work shows that this approach is promising. For example, 
writing  = , an expression for the non-additive kinetic energy 
density  of the type

                                 (9)
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has been shown (Jiang, et al., 2018) to provide an excellent approximation to the exact  
 in covalent σ-bonds. In Equation (9),  is the von Weizsäcker kinetic-energy 

density (Weizsäcker, 1935), which is exact for one-orbital systems,   is the 
Thomas-Fermi kinetic-energy density (Fermi, 1927; Thomas, 1927), exact for uniform-
density systems, and Q[n] is a switching functional whose role is analogous to that of 
S[n] in Equation (7), as described in detail in Jiang, et al., 2018. It determines the spatial 
regions where a one-orbital description should dominate.

Embedding methods provide the most promising route to truly calculate ab-initio 
electronic structures of large, complex, molecular systems (Yao, et al., 2019; Lee, et 
al., 2019; Mi&Pavanello, 2020). Although Partition-DFT has been applied so far only 
to model systems (Elliot, et al., 2010), diatomic molecules (Nafziger & Wasserman, 
2014) and small hydrogen-bonded clusters (Gómez, et al., 2017; Gómez, et al., 2019), an 
ongoing implementation into the Psi4 package (Chávez, et al., 2020) will allow more for 
more widespread application. An accurate and explicit functional of the fragment densities 
for  will make Partition-DFT amenable to linear scaling implementations and, thus, 
applicable to systems of ever-larger complexity.

Towards a quantum theory of chemical reactivity
We glossed over one key feature of the PPT of Section III. The minimization of Ef [n] is 
performed under the constraint that the nα(r) add to n(r) without individual normaliza-
tion constraints for the atomic densities. The nα(r) can integrate to fractional numbers 
of electrons Nα as long as the total density integrates to the correct number of electrons, 
i.e., ∑α Nα = N. A sensible interpretation of fractional number densities is provided by 
an ensemble description where the fractional number arises as an ensemble average 
over integer-number components. One result of the extension of DFT for fractional 
electron numbers (Perdew, et al., 1982) is that for Nα between the integers pα and pα+1, 
the minimizing density (for the exact EXC) is given by nα(r) = (1- ωα) npα(r) + ωαnpα+1(r), 
where 0 ≤ ωα ≤ 1. The minimization of Ef [n] is to be performed over the set of the 
{ωα} leading to possibly fractional-number densities. One immediate advantage of such 
fractional densities is that chemical reactivity indices involving derivatives of various 
properties with respect to the electron number become sharply defined for the atoms 
(Geerlings, et al., 2003; Geerlings, et al., 2014). For example, Fukui functions are given 
directly by

                          (10)

as normally defined (Parr & Yang, 1984), but here the bordering-integer densities include 
the polarizing effect of the partition potential which accounts for the detailed environment 
of the atom in the molecule. Similarly, the {ωα} are those that lead to electronegativity 
equalization (Cohen & Wasserman, 2006; Parr, et al., 1978).

Perspective
The approximations of Equations (7) and (9) need to be extended to be applicable to realistic, 
complex chemical systems. The roads to robust approximations of general applicability 
and to efficient and accurate linear-scaling algorithms will be long and winding. Therefore, 
one might wonder whether these roads are worth taking in the first place, especially given 
that: (a) As computers get more powerful and machine-learning conquers the quantum-
chemistry landscape, KS-DFT calculations with sophisticated approximations to EXC will 
become applicable to an ever-expanding frontier of chemical complexity; (b) several other 
fragment-based (Gordon, et al., 2012) and embedding methods (Jacob & Neugebauer, 
2014; Lee, et al., 2019; Sun & Chan, 2016) are enabling multi-million atom and multi-
scale calculations where individual fragment densities are of little use, and (c) quantum 
computing, when finally here, will allow for the direct calculation of many-electron wave 
functions rendering DFT-based methods obsolete.
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Our current take on these three valid concerns is the following: (a) Further improve-
ments of approximate XC functionals will continue via two directions: A non-empirical 
approach in which more exact constraints will be incorporated, especially perhaps in the 
framework of Generalized-Kohn-Sham (Kummel & Kronik, 2008; Seidl, et al., 1996), 
and an empirical approach exploiting large data sets of chemical information through 
machine-learning tools (Seino, et al., 2018; Snyder, et al., 2012). All of these positive 
developments can be readily incorporated into the framework described in Section III. 
Furthermore, as mentioned toward the end of Section III, the fragments do not need to be 
atoms but could be monomers, functional groups, protein backbones, etc., and calcula-
tions will greatly benefit from improved approximations to EXC; (b) there is plenty of room 
in quantum chemistry for more than one type of embedding method. When minimizing 
the total energy is the only goal, our approach is admittedly not essential. When, however, 
besides minimizing the energy one is interested in examining the individual fragment 
density distortions or understanding the reactivity of one fragment in a specific chemical 
environment, then our approach offers a unique, useful perspective; (c) yes, someday 
quantum computers will be ready to solve the many-electron Schrödinger equation for 
large molecules. However, one will always want to understand the results, which involves 
determining how individual atoms or fragments in the molecule are distorted due to the 
interactions with neighboring atoms or fragments. The tools described here allow us to 
accomplish precisely this, regardless of the type of computers employed. 
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