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Abstract

In Linear Algebra over finite fields, a characteristic-dependent linear rank inequality is a linear inequality that holds by
ranks of spans of vector subspaces of a finite dimensional vector space over a finite field of determined characteristic,
and does not in general hold over fields with other characteristic. This paper shows a preliminary result in the
production of these inequalities. We produce three new inequalities in 21 variables using as guide a particular binary
matrix, with entries in a finite field, whose rank is 8, with characteristic 2; 9 with characteristic 3; or 10 with
characteristic neither 2 nor 3. The first inequality is true over fields whose characteristic is 2; the second inequality
is true over fields whose characteristic is 2 or 3; the third inequality is true over fields whose characteristic is neither
2 nor 3.
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Resumen

En Álgebra Lineal sobre cuerpos finitos, una desigualdad rango lineal dependiente de la característica es una desigual-
dad lineal que es válida para dimensiones de sumas de subspacios vectoriales de un espacio vectorial de dimensión
finita sobre un cuerpo finito de determinada característica, y no es válida en general sobre cualquier cuerpo de otra
característica. Este documento presenta un resultado preliminar referente a la producción de estas desigualdades.
Nosotros producimos tres desigualdades nuevas en 21 variables usando como guía una matriz binaria particular, con
entradas en un cuerpo finito, cuyo rango es 8, 9 o 10 dependiendo de que la característica sea 2, 3 o distinta de 2 y 3.
La primera desigualdad es válida sobre cuerpos de característica 2; la segunda es válida sobre cuerpos de característica
2 o 3; la tercera es válida sobre cuerpos de característica distinta de 2 y 3.

Palabras clave: Entropía; Desigualdad rango lineal; Matriz binaria; Suma directa de espacios vectoriales.

Introduction

In Linear Algebra over finite fields, a linear rank inequality
is a linear inequality that is always satisfied by ranks (dimen-
sions) of subspaces of a vector space over any field. Infor-
mation inequalities are a sub-class of linear rank inequalities
(A. Shen, et al., 2000). The Ingleton inequality is an example
of a linear rank inequality which is not information inequal-
ity (Ingleton, 1969), other inequalities have been presented
in (Kinser, 2011) among others. A characteristic-dependent
linear rank inequality is like a linear rank inequality but this is
always satisfied by vector spaces over fields of certain char-
acteristic and does not in general hold over fields with other
characteristic. In Information Theory, especially in linear
network coding, all these inequalities are useful to calculate
the linear rates of communication networks (Dougherty, et
al., 2013). It is remarkable that the linear rate of a network
depends on the characteristic of the scalar field associated
to the vector space of the network codes (Dougherty, et al.,
2005; Dougherty, et al., 2013). Therefore, when we study
linear rates over specific fields, characteristic-dependent lin-

ear rank inequalities are more useful than usual linear rank
inequalities.

Characteristic-dependent linear rank inequalities have
been presented in (Blasiak, et al., 2011; Dougherty, et al.,
2013; Freiling, 2014). The technique used by Dougherty
et al. to produce these inequalities used as a guide the
network flow of some matroidal networks to obtain restric-
tions over linear solubility; these restrictions imply the in-
equalities. This technique has produced many inequalities
(Freiling, 2014), and this is different from the technique used
by Blasiak et al. that directly produces two inequalities from
the dependency relations of the Fano and non-Fano matroids;
it has only produced two inequalities. So we ask ourselves,
can more inequalities be produced from other suitable repre-
sentable matroids and following the ideas of Blasiak et al.?

In this paper, we answer affirmatively. Following a par-
ticular case, we show a method to produce characteristic-
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dependent linear rank inequalities using as guide a suitable
binary matrix; we use the dependency relationships of its
columns which are naturally associated with matroid repre-
sentations. The rank of the desired matrix is 8 if the entries
are in a field whose characteristic is 2; the rank is 9 if the
characteristic is 3; and the rank is 10 if the characteristic
is neither 2 nor 3. We “convert” this property in three in-
equalities: the first inequality is true over fields whose char-
acteristic is 2; the second inequality is true over fields whose
characteristic is 2 or 3; the third inequality is true over fields
whose characteristic is neither 2 nor 3. The inequalities do
not in general hold over fields with other characteristic. We
hope that the techniques presented in this paper can be ap-
plied to other types of matrices whose rank behaves in a sim-
ilar way to the described matrix.

The paper is organized as follows. We introduce some
mathematical tools of information theory. After, we show
the theorem that produces the described inequalities; before
presenting the proof, we give some propositions and lemmas
that will be helpful. Finally, we show the proof and some
conclusions.

Entropy and inequalities in Linear Algebra

In the following, we introduce the necessary concepts to un-
derstand this paper. Let A, B, A1, . . ., An be vector sub-
spaces of a finite dimensional vector space V over a finite
field F. Let

∑
i∈I

Ai be the span of Ai, i ∈ I . There is a cor-

respondence between inequalities satisfied by dimensions of
spans of vector spaces and inequalities satisfied by entropies
of certain class of random variables induced by vector spaces
(A. Shen, et al., 2000, Theorem 2). We explain that: let f be
chosen uniformly at random from the set of linear functions
from V to F. For A1, . . ., An define the random variables
X1 = f |A1 , . . ., Xn = f |An . For I ⊆ [n] := {1, . . . , n},
we have

H(Xi : i ∈ I) = (log |F|) dim

(∑
i∈I

Ai

)
.

The random variables X1, . . ., Xn are called linear random
variables over F. For simplicity, we identify the entropy of
linear random variables with the dimension of the associated
subspaces, i.e. H(Ai : i ∈ I), the entropy of Ai, i ∈ I , is

dim

(∑
i∈I

Ai

)
. With this notation, the mutual information of

A and B is given by I (A;B) = dim (A ∩B). The codi-
mension of A in V is given by codimV (A) = dim (V ) −
dim (A). We have H(A | B) = codimA (A ∩B). In a sim-
ilar way conditional mutual information is expressed.

We give the following definition in order to fix ideas
about inequalities.

Definition 1. Let P be a proper subset of primes, and let I1,
. . ., Ik be subsets of [n]. Let αi ∈ R, for 1 ≤ i ≤ k . A

linear inequality of the form

k∑
i=1

αiH(Xj : j ∈ Ii) ≥ 0

- is called a characteristic-dependent linear rank inequal-
ity if it holds for all jointly distributed linear random vari-
ables X1, . . ., Xn finite fields with characteristic in P , and
does not in general hold over fields with other characteristic.

- is called a linear rank inequality if it holds for all jointly
distributed linear random variables over all finite field.

- is called an information inequality if the inequality
holds for all jointly distributed random variables.

By definition of linear random variables, we note any in-
formation inequality is an inequality which is also satisfied
by dimensions of spans of vector spaces. The following in-
equality is the first linear rank inequality which is not infor-
mation inequality.

Example 2. (Ingleton, 1969) For any A1, A2, A3, A4 sub-
spaces of a finite dimensional vector space,

I (A1;A2) ≤ I (A1;A2 | A3)+I (A1;A2 | A4)+I (A3;A4) .

We can think a characteristic-dependent linear rank in-
equality like a linear rank inequality that is true over some
fields.

We say that A + B is a direct sum, denoted by A ⊕ B,
if A ∩ B = O. In case that V = A ⊕ B, the members of
this sum are called (mutually) complementary subspaces in
V . Alternatively, A1, . . ., An are mutually complementary
subspaces in V if every vector of V has an unique represen-
tation as a sum of elements of A1, . . ., An. In this case,
πI denotes the I-projection function V �

⊕
i∈I

Ai given by

x =
n∑

i=1

xi �→
∑
i∈I

xi.

The inequalities of the following lemmas, that we will
use later, are valid for linear random variables that hold some
additional conditions.

We remark that we use the following notation of inter-
vals: [j, k] := {i ∈ N : j ≤ i ≤ k}, [k] = [1, k]. The sum
Aj + · · ·+Ak is denoted by A[j,k], and A0 := A∅ := O.

Lemma 3. For any subspaces A1, . . ., An, A′
1, . . ., A′

n of
a finite dimensional vector space V such that A′

i ≤ Ai, we
have

H
(
A[n] | A′

[n]

)
≤

∑
i∈[n]

H(Ai | A′
i) ,

with equality if and only if Ai+1 ∩A[i] = A′
i+1 ∩A′

[i] for all
i.

Proof. By induction over n. In case n = 2, we have

H
(
A[2] | A′

[2]

)
= H

(
A[2]

)
−H

(
A′

[2]

)

= H (A1) + H (A2 | A1)− H (A′
1)− H (A′

2 | A′
1)

= H (A1 | A′
1)+H (A2)−H (A′

2)− I (A1;A2)+ I (A′
1;A

′
2)
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= H(A1 | A′
1) + H (A2 | A′

2) + (I (A′
1;A

′
2)− I (A1;A2))

≤ H(A1 | A′
1) + H (A2 | A′

2) [because A′
i ≤ Ai].

The equality holds if and only if I (A1;A2) = I (A′
1;A

′
2). In

other words, A1 ∩ A2 = A′
1 ∩ A′

2 because A′
i ≤ Ai. Now,

we suppose the case n− 1 is true. We have

H
(
A[n] | A′

[n]

)
= H

(
A[n−1]∪n | A′

[n−1]∪n

)

≤ H
(
A[n−1] | A′

[n−1]

)
+H(An | A′

n) [from case n = 2]

≤
∑
i∈[n]

H(Ai | A′
i) [from case n− 1].

The equality holds if and only if I
(
Ai+1;A[i]

)
=

I
(
A′

i+1;A
′
[i]

)
. Since A′

i ≤ Ai for all i, we have Ai+1 ∩
A[i] = A′

i+1 ∩A′
[i].

Lemma 4. For any subspaces A, B , C of a finite dimen-
sional vector space V such that B ≤ A, we have

H(A ∩ C | B ∩ C) ≤ H(A | B) ,

with equality if and only A+ C = B + C.

Proof. We have

H(A ∩ C | B ∩ C) = H (A ∩ C)−H(B ∩ C)

= I (A;C)− I (B;C)

= H (A)−H(B)−H(A,C) + H (B,C)

≤ H(A | B) [because B ≤ A].

The equality holds if and only if H(A,C) = H (B,C).
Since B ≤ A, it follows that A+ C = B + C.

Producing inequalities

Let B be the following 10× 10 binary matrix

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10


0 1 1
1 0 1
1 1 0

O3×3 O3×4

O3×3

0 1 1
1 0 1
1 1 0

O3×4

O4×3 O4×3

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




.

We calculate the rank of the matrix B over different fields
to find:

rank (B) =





8, char (F) = 2
9, char (F) = 3
10, otherwise.

For a column bi of B, the set
{
j : bji = 1

}
⊆ [10] is de-

noted by b̄i; if there is no confusion, by abuse of notation,
we identify bi and b̄i. The notation is the same for row and
column vectors. We define:

∆B (C) := H
(
C | A[10]

)
+

10∑
i=1

I
(
A[n]−i;C

)
,

∆B

(
A[10]

)
:= I (A1;A2) + 2I

(
A[3];A[4,10]

)

+I
(
A[2];A[3,10]

)
+ 2I

(
A[6];A[7,10]

)
+ I

(
A[4];A5

)

+I
(
A[5];A[6,10]

)
+

10∑
i=8

I
(
A[i−1];Ai

)
,

∇B

(
A[10]

)
:=

∑
(j,k)∈S

k∑
i=j

[
I
(
A[j−1];A[j,i−1]

)
+ I

(
A[i];A[i+1,k]

)]
,

where S is the set of the three points (1, 3), (4, 6), (7, 10).
The theorem of this paper shows three characteristic-

dependent linear rank inequalities. The proof is guided by
the matrix B; we choose this matrix because it is the small-
est binary matrix, which we find, whose rank is different over
at least three different finite fields. We hope that the argu-
ments presented in the demonstration can be used to produce
other inequalities taking matrices that have similar properties
to this matrix.

Theorem 5. Let A1, A2, A3, A4, A5, A6, A7, A8, A9, A10,
B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, C be vector
subspaces of a finite dimensional vector space V over a fi-
nite field F. The following inequalities are characteristic-
dependent linear rank inequalities:

- If the characteristic of F is 2, then

H
(
B[10]

)
≤ 8I

(
A[10];C

)
+

10∑
i=1

H(Bi | Aj : j ∈ bi)

+

10∑
i=1

H(Bi | Ai, C : j /∈ bi) + 10∆B (C)

+∆B

(
A[10]

)
+∇B

(
A[10]

)
.

- If the characteristic of F is 2 or 3, then

H
(
B[10]

)
≤ 9I

(
A[10];C

)
+

10∑
i=1

H(Bi | Aj : j ∈ bi)

+

10∑
i=1

H(Bi | Ai, C : j /∈ bi) + 10∆B (C)

+∆B

(
A[10]

)
+∇B

(
A[10]

)
.
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- If the characteristic of F is neither 2 nor 3, then

H(C) ≤ 1

10
I
(
B[10]

)
+

10∑
i=1

H(Bi | Aj : j ∈ bi)

+
10∑
i=1

H(C | Ai, Bi : j /∈ bi) +∆B (C)

+∆B

(
A[10]

)
+∇B

(
A[10]

)
.

We remark that these inequalities do not in general hold
over other fields whose characteristic is different to the des-
cribed characteristic. A counterexample would be in V =
GF (p)

10. Take the vector subspaces: Ai = 〈ei〉, the span of
each vector of the canonical basis in V ; Bi = 〈bi〉, the span
of each column of the matrix B; and C = 〈(1 · · · 1)〉, the
span of the vector with 1 in all entries. Then, if p �= 2, the
first inequality does not hold; if p �= 2, 3, the second inequal-
ity does not hold; if p = 2 or 3, the third inequality does not
hold.

The proof is given at the end of the section. Before, we
introduce some propositions and lemmas that will help its
development.

Let V = A1 ⊕ · · · ⊕ An, and take a vector subspace C
of V such that A1 + · · ·+ Ai−1 + C + Ai+1 + · · ·+ An is
a direct sum for all i. We say that (A1, . . . , An, C) is a tuple
of complementary vector subspaces in V .

Proposition 6. A subspace C as above described holds
H(πI (C)) = H (C) ≤ H(A1), for all ∅ �= I ⊆ [n].

Proof. Let x ∈ C such that πI (x) = O. So,
∑
i∈I

xi = O.

Hence, x ∈
⊕
i/∈I

Ai. By property of the tuple of complemen-

tary vector subspaces, x = O. In other words, πI (C) and C
are isomorphic or have the same dimension.

As a consequence a non-zero element of C can be written
uniquely as a sum of non-zero elements of A1, . . ., An.

Consider any n×m binary matrix B′, with columns de-
noted by bi. Let πbi be the Ii-projection of

V = A1 ⊕ · · · ⊕An,

where
Ii := b̄i =

{
j ∈ [n] : bji = 1

}
.

Take
bIi :=

∑
j

bjIiej ∈ V,

where (ej)j is the canonical basis in V ; and bjIi is 1 if
ej ∈ Ak for some k such that bk = 1, and 0 in otherwise. If
x =

∑
j

xjej , then we have

πbi (x) = bIi · x :=
∑
j

bjIixjej .

We have the following proposition.

Proposition 7. Let V = A1 ⊕ · · · ⊕ An, Ai �= O, and
let B′ be a n × m binary matrix. For all i and I , we have
bi =

∑
j∈I

αjbj if and only if πbi =
∑
j∈I

αjπbj .

Proof. We note bi =
∑
j∈I

αjbj if and only if bIi =
∑
j∈I

αjbIj .

Now, let bi =
∑
j∈I

αjbj . For x ∈ V ,

∑
j∈I

αjπbj (x) =
∑
j∈I

αj

(
bIj · x

)

=
∑
j∈I

(
αjbIj · x

)

=


∑

j∈I

αjbIj


 · x

= bIi · x

= πbi (x) .

The other implication is obtained from

πbi (1 · · · 1) =
∑
j∈I

αjπbj (1 · · · 1) .

Example 8. Take B′ =

b1 b2 b3


0 1 1
1 0 1
1 1 0


 . In V = GF (2)

5,

define A1 = 〈e1, e4〉, A2 = 〈e2, e5〉, A3 = 〈e3〉. We have

bI1 =




0
1
1
0
1




, bI2 =




1
0
1
1
0




, bI3 =




1
1
0
1
1




. One can

check that b1 = b2 + b3 and bI1 = bI2 + bI3 .

As a consequence of Proposition 6, if each Ai and C are
one-dimensional vector spaces, then C is isomorphic to the
span of (1 · · · 1), and each πbi (C) is isomorphic to 〈bIi〉.
From this and the last proposition, we have the following
proposition that is a stronger version of this fact:

Corollary 9. Let (A1, . . . , An, C) be a tuple of complemen-
tary vector subspaces in V over F with C �= O, and let B′

be a n × m binary matrix with columns denoted by bi. We
have {bi}i∈I is an independent set if and only if

∑
j∈I

πbj (C)

is a direct sum.

If we take B′ := B, the 10 × 10 binary matrix defined
above, in the last corollary, we obtain:
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Corollary 10. If (A1, . . . , A10, C) is a tuple of complemen-
tary vector subspaces of V , then

H(πbi (C) : i ∈ [10]) =




8H (C) , char (F) = 2
9H (C) , char (F) = 3
10H (C) , otherwise.

In the rest of the paper, we only work with the matrix
B. The Corollary 10 is used immediately to find three in-
equalities which are true over vector spaces that hold some
conditions. We note that the desired conditions are described
by the dependency relationships of the columns of B.

Proposition 11. Let A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10, B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, C vector
subspaces of a finite dimensional vector space V over a finite
field F such that (A1, . . . , A10, C) is a tuple of complemen-
tary vector subspaces. Consider the following conditions:

(i) Bi ≤
⊕
j∈bi

Aj .

(ii) Bi ≤

(
⊕
j /∈bi

Aj

)
⊕ C.

(iii) C ≤

(
⊕
j /∈bi

Aj

)
+Bi.

We have the following implications:
1. If conditions (i) and (ii) hold, and the characteristic of

F is 2, then
H
(
B[10]

)
≤ 8H (C) .

2. If conditions (i) and (ii) hold, and the characteristic of
F is 3, then

H
(
B[10]

)
≤ 9H (C) .

3. If conditions (i) and (iii) hold, and the characteristic
of F is neither 2 nor 3, then

10H (C) ≤ H
(
B[10]

)
.

Proof. To proof 1 and 2, we can use

πbi (C) =


⊕

j∈bi

Aj


 ∩




⊕

j /∈bi

Aj


⊕ C


 .

Therefore, using conditions (i) and (ii), we have Bi ≤
πbi (C). Then we apply the last corollary. To proof 3, using
conditions (i) and (iii), we can derive πbi (C) ≤ Bi. Then
we apply the last corollary.

Define Ā1 := A1, and for i > 1, take a vector subspace
of Ai which is complementary to

∑
j<i

Aj in
∑
j≤i

Aj , denote this

subspace by Āi. We have

V ′ := Ā1 ⊕ · · · ⊕ Ā10 ≤ V.

Let C(0) = V ′ ∩ C. Recursively, for i, denote by C(i), a
subspace of C(i−1) which is a complementary subspace to

Ā1 ⊕ · · · ⊕ Āi−1 ⊕ Āi+1 ⊕ · · · ⊕ Ā10

in

Ā1 ⊕ · · · ⊕ Āi−1 ⊕ C(i−1) ⊕ Āi+1 ⊕ · · · ⊕ Ā10.

Let C̄ denote the subspace C(10). The tuple(
Ā1, . . . , Ā10, C̄

)
is not unique but from now on we fix

one of these tuples.

Lemma 12.
(
Ā1, . . . , Ā10, C̄

)
is a tuple of complementary

vector subspaces in V ′ that holds the following inequalities:

H
(
C | C̄

)
≤ ∆B (C) ,

10∑
i=1

H
(
Aj : j /∈ bi | Āj : j /∈ bi

)
≤ ∆B

(
A[10]

)
,

10∑
i=1

H
(
Aj : j ∈ bi | Āj : j ∈ bi

)
≤ ∇B

(
A[10]

)
.

Proof. The given tuple is a tuple of complementary vector
subspaces in V ′ by definition. Furthermore, using Lemma 3,
we have the following inequalities:

H
(
C | C(0)

)
≤ H

(
C | A[10]

)
,

H
(
C(0) | C̄

)
≤

10∑
i=1

I
(
A[n]−i;C

)
,

H
(
A[j,k] | Ā[j,k]

)
= I

(
A[1,j−1];A[j,k]

)
,

for all j, k,

H
(
A[j,k]−i | Ā[j,k]−i

)
≤ I

(
A[j−1];A[j,i−1]

)

+I
(
A[i];A[i+1,k]

)
,

for (j, k) ∈ S, i ∈ [j, k] ,

H
(
Ai∪[4,10] | Āi∪[4,10]

)
≤ I (Ai−1;A2) + I

(
A[3];A[4,10]

)

for i = 1, 2,

H
(
A[4]∪[7,10] | Ā[4]∪[7,10]

)
≤ I

(
A[6];A[7,10]

)
,

H
(
A5∪[3]∪[7,10] | Ā5∪[3]∪[7,10]

)
≤ I

(
A[4];A5

)

+I
(
A[6];A[7,10]

)
,

H
(
A[3]∪[6,10] | Ā[3]∪[6,10]

)
≤ I

(
A[5];A[6,10]

)
,

H
(
Ai∪[6] | Āi∪[6]

)
≤ I

(
A[i−1];Ai

)
,

for i = 8, 9, 10.

One can use all these inequalities along with the definitions
of ∆B (C), ∆B

(
A[10]

)
, ∇B

(
A[10]

)
(these definitions were

previously given) to obtain the described inequalities.
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Lemma 13. For each i, let

B̄i := Bi ∩


⊕

j∈bi

Āj


 ∩




⊕

j /∈bi

Āj


⊕ C̄


 .

We have the subspaces Ā1, . . ., Ā10, B̄1, . . ., B̄10, C̄ sa-
tisfy conditions (i), (ii) of Proposition 11, and the following
inequality holds

H
(
Bi : i ∈ [10] | B̄i : i ∈ [10]

)
≤

10∑
i=1

H(Bi | Aj : j ∈ bi)

+
10∑
i=1

H(Bi | Ai, C : j /∈ bi) + 10∆B (C)

+∆B

(
A[10]

)
+∇B

(
A[10]

)
.

Proof. The subspaces satisfy conditions (i) and (ii) of Propo-
sition 11 by definition. Also, we have

H
(
Bi | B̄i

)
≤ H

(
Bi | Āj : j ∈ bi

)

+H
(
Bi | Āj , C̄ : j /∈ bi

)

[definition of B̄i]

= H(Bi | Aj : j ∈ bi) + H (Bi | Aj , C : j /∈ bi)

+H


Bi ∩


⊕
j∈bi

Aj


 | Bi ∩


⊕
j∈bi

Āj






+H


Bi ∩


C ⊕


⊕
j /∈bi

Aj




 | Bi ∩


C̄ ⊕


⊕
j /∈bi

Āj








[because Āj ≤ Aj , C̄ ≤ C]

≤ H(Bi | Aj : j ∈ bi) + H
(
Aj : j ∈ bi | Āj : j ∈ bi

)

+H(Bi | Aj , C : j /∈ bi)

+H
(
Aj , C : j /∈ bi | Āj , C̄ : j /∈ bi

)

[from Lemma 4]

≤ H(Bi | Aj : j ∈ bi) + H (Bi | Aj , C : j /∈ bi)

+H
(
Aj : j ∈ bi | Āj : j ∈ bi

)
+H

(
Aj | Āj : j /∈ bi

)

+H
(
C | C̄

)
[from Lemma 3].

Then, we apply the inequalities from Lemma 12.

Lemma 14. For each i, let

B̂i := Bi ∩


⊕

j∈bi

Āj


 ,

Ĉ := C̄

10⋂
i=1




⊕

j /∈bi

Āj


+ B̂i


 .

We have the subspaces Ā1, . . ., Ā10, B̂1, . . ., B̂10, Ĉ sat-
isfy conditions (i), (iii) of Proposition 11, and the following
inequality holds

H
(
C | Ĉ

)
≤

10∑
i=1

H(C | Aj , Bi : j /∈ bi)

+

10∑
i=1

H(Bi | Aj : j ∈ bi) +∆B (C)

+∆B

(
A[10]

)
+∇B

(
A[10]

)
.

Proof. The subspaces satisfy conditions (i) and (iii) of
Proposition 11 by definition. Also,we have

10∑
i=1

H
(
Bi | B̂i

)
≤

10∑
i=1

H(Bi | Aj : j ∈ bi) +∇B

(
A[10]

)
.

Hence,

H
(
C | Ĉ

)
= H

(
C | C̄

)
+H

(
C̄ | Ĉ

)

≤ H
(
C | C̄

)
+H

(
C | Ĉ

)

[because Ĉ ≤ C̄ ≤ C]

≤ H
(
C | C̄

)
+

10∑
i=1

H
(
C | Āj , B̂i : j /∈ bi

)

[definition of B̄i]

≤ H
(
C | C̄

)
+

10∑
i=1

H(C | Ai, Bi : j /∈ bi)

+

10∑
i=1

H


C∩


Bi +


⊕
j /∈bi

Aj




 | C ∩


B̂i +


⊕
j /∈bi

Āj








[because Āj ≤ Aj , B̂i ≤ Bi]

≤ H
(
C | C̄

)
+

10∑
i=1

H(C | Ai, Bi : j /∈ bi)

+

10∑
i=1

H
(
Aj , Bi : j /∈ bi | Āj , B̂i : j /∈ bi

)

[from Lemma 4]

≤ H
(
C | C̄

)
+

10∑
i=1

H(C | Ai, Bi : j /∈ bi)

+

10∑
i=1

H
(
Aj : j /∈ bi | Āj : j /∈ bi

)
+

10∑
i=1

H
(
Bi | B̂i

)

[from Lemma 3].

Then, we apply the inequalities from Lemma 12 and the in-
equality presented at the beginning of the proof.
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Proof of Theorem 5

To prove the inequality 1, from Lemma 13, the vector sub-
spaces Ā1, . . ., Ā10, B̄1, . . ., B̄10, C̄ satisfy Proposition 11
with condition 1 if the characteristic of the field F is 2. We
have

H
(
B̄[10]

)
≤ 8H

(
C̄
)
.

One can note H
(
C̄
)
≤ I

(
A[10];C

)
, and the inequality given

in Lemma 13 can be write as

H
(
B[10]

)
−

10∑
i=1

H(Bi | Aj : j ∈ bi)

−
10∑
i=1

H(Bi | Ai, C : j /∈ bi)− 10∆B (C)

−∆B

(
A[10]

)
−∇B

(
A[10]

)
≤ H

(
B̄[10]

)
.

Using all these inequalities we obtain the desired inequality.
The inequality 2 is obtained in a similar way; and from

the inequality 1, it is easy to note that the inequality 2 also
holds over fields whose characteristic is 2.

To prove the inequality 3, from Lemma 14, the vector
subspaces Ā1, . . ., Ā10, B̂1, . . ., B̂10, Ĉ satisfy Proposition
11 with condition 3 if the characteristic of the field F is nei-
ther 2 nor 3, we have

10H
(
Ĉ
)
≤ H

(
B̂[10]

)
.

One can note H
(
B̂[10]

)
≤ H

(
B[10]

)
, and the inequality

given in Lemma 14 can be write as

H(C)−
10∑
i=1

H(C | Aj , Bi : j /∈ bi)

−
10∑
i=1

H(Bi | Aj : j ∈ bi)−∆B (C)

−∆B

(
A[10]

)
−∇B

(
A[10]

)
≤ H

(
Ĉ
)
.

Using all these inequalities we obtain the desired inequality.

�

Conclusions

In this paper, we produce three characteristic-dependent lin-
ear rank inequalities in 21 variables using as guide a suit-
able binary matrix whose rank is different over at least three

different fields (specifically, the rank depends on the charac-
teristic of the field). The first inequality is true over fields
whose characteristic is 2; the second inequality is true over
fields whose characteristic is 2 or 3; and the third inequal-
ity is true over field whose characteristic is neither 2 nor 3.
We hope that the technique presented here can be used to
produce other inequalities, choosing other suitable matrices.
In future work, the independence or dependence of these in-
equalities and their possible applications to Network Coding
must be studied.
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