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Abstract

This paper is a summary of the talk given with the occasion of the author’s induction as Corresponding Member of
the Academia Colombiana de Ciencias Exactas Fisicas y Naturales. We describe recent results in an area of analysis
which focuses on the relationship between the geometric properties of a domain and the behavior near the boundary
of the solutions to canonical PDEs in this domain. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.
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Analisis y geometria en dominios irregulares
Resumen

Esta nota esta basada en la charla de posesiéon como Miembro Correspondiente de la Academia Colombiana de
Ciencias Exactas Fisicas y Naturales. En ella describo algunos de los resultados recientes en un area de analisis que
esta enfocada en entender la relacion entre las propiedades geométricas de un dominio y el comportamiento hacia
la frontera de las soluciones de ecuaciones diferenciales parciales en este dominio. © 2017. Acad. Colomb. Cienc.
Ex. Fis. Nat.
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de Lipschitz.

1. Introduction

Over the last few years there has been growing
interest in understanding the relationship between
the geometry of a domain in Euclidean space and
the properties of the solutions to canonical partial
differential operators defined on it. The question
of whether the boundary behavior a general har-
monic function can distinguish between a ball and
a snowflake or between a Lipschitz domain and the
complement of the 4-corner Cantor set illustrates the
type of issues one is concerned with in this area of
analysis, which lies at the interface of Partial Dif-
ferential Equations, Harmonic Analysis, Geometric
Measure Theory and Free Boundary Problems.
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Smooth domain Lipschitz domain

Snowbeall Complement of
(Quasi-ball) the 4-corner Cantor set

From the geometric point of view the boundaries of these
four domains are very different. A smooth domain in
R" is, locally, the area above the graph of a C* func-
tion, tangent planes exist and are continuous at each point
of the boundary, the (n — 1)-dimensional Hausdorff mea-
sure, H" 1, of a surface ball (that is a ball centered on the
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boundary intersection the boundary) of radius r grows
like #"~! for r small. A Lipschitz domain in R" is, locally,
the area above the graph of a Lipschitz function, tangent
planes exist H"~! almost everywhere on the boundary,
the (n — 1)-dimensional Hausdorff measure of a surface
ball of radius r grows like *~! for r small. A snowball
(resp. a typical quasi-ball, that is the image of the unit
ball by a quasi-conformal map on the whole space) is not
locally the area above any function, tangent lines (resp.
tangent planes) do not exist and the H! (resp. H"!)
measure of surface balls is infinite. Furthermore for a
typical quasi-ball in R” the Hausdorff dimension of the
boundary is strictly greater than n — 1. The complement
of the 4-corner Cantor set (produced by iterating the pic-
ture above) has a totally disconnected boundary of Haus-
dorff dimension 1, the H! measure of a surface ball cen-
tered on the boundary and of radius r grows like r for
r < 1. On the other hand since the 4-corner Cantor set
is purely unrectifiable tangent lines do not exist on any
subset of positive H! measure.

Nevertheless from the analytic point of view, under the
correct magnifying glass, these domains are very similar.
In fact these four type of domains are uniform or 1-sided
NTA (non-tangentially accessible, see Definition 2.4) and
satisfy the CDC (Capacity Density Condition)(see (Ma),
(A1), (A2), (HM1), (HMT2)). The CDC is a rather techni-
cal condition, which will not be defined here. The reader
should interpret it as a uniform measure of the thick-
ness of the complement of the domain which makes the
domain Wiener regular (see (W) and Definition 1.1) and
yields additional estimates on the continuity of the classi-
cal solution to the Dirichlet problem if the boundary data
f is Lipschitz.

Definition 1.1. A bounded domain () C R” is said to be
Wiener regular for L if for any f € C(dQ)) there exists
u € WH2(0) N C(Q) satisfying

Lu =

U

where Lu = —div (A(X)Vu) and A(X) = (a;j(X)) is an

uniformly elliptic matrix with bounded measurable co-

efficients, i.e. there exist 0 < A < A < oo such that for
Xeand ¢ eR"

0in O

f on 00} (1.1)

n

AP < (AX)E,8) = ) ay(X)&ic; < Al
ij=1

Remarks 1.1. (1) If A = Id, then L = A is the Lapla-

cian. In general L is a variable coefficient version

of the Laplacian. A domain () is Wiener regular

for L if and only if it is Wiener regular for the
Laplacian ((LWS)).

(1.2)
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(2) Lu = 0 means that u and its weak derivatives are
in L2(Q)) and that for any ¢ € C}(Q)

/ (A(X)Vu, V) = 0.

(3) The maximum principle holds for the solutions
to (1.1),

1.3)

sup ] < max( | (1.4

(4) The interior regularity is a classical result due to
DeGiorgi, Nash and Moser: u is Holder contin-
uous in O (see (DeG), (N), (Mo)). Furthermore
additional regularity of A implies higher interior
regularity of the solution (see (GT)).

(5) If O is regular then for X € Q and f € C(9Q)
if u € C(Q) is the solution to (1.1), by the Maxi-
mum Principle |u(X)| < maxyq |f]. Thus for each
X € ), the operator Ty : C(0Q)) — R defined by
Tx(f) = u(X) is a bounded linear operator, with
ITx|| < 1. Moreover Tx(1) = 1. Hence by the
Riesz Representation Theorem there is a proba-
bility measure w{ s.t.

u(X) = /a F@de(9).

wz( is the L—elliptic measure of () with pole X.

(6) If Lis the Laplacian wj, = w is the harmonic mea-
sure. For a domain () C R”, a)X(E) denotes the
probability that a Brownian motion starting at X
will first hit the boundary at a point of E C 0Q)
(see figure below). As a function of X, wX(E) is
a harmonic function.

(1.5)

I
TN

AN
G .
AL

(7) If Q) is (Wiener) regular and connected the Har-
nack principle implies that for X,Y € Q, w{
and w{ are mutually absolutely continuous. In
fact given a compact set K C ) and E C d(),
wX(E)/wY (E) is bounded above and below by a
constant depending only on 7 and K. This makes
the type of properties we focus on are indepen-
dent of the pole X so we denote wX simply by
w.

J

One of the sample questions in this area is whether the
harmonic measure distinguishes between: smooth do-
mains, Lipschitz domains, quasi-balls or the complement
of the 4-corner Cantor set? This is part of a central theme
which addresses the problem of characterizing the opera-
tors L satisfying (1.2) in a uniform domain ) C R" with
Ahlfors regular boundary (see Definitions 2.4 and 2.5) for
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which the behavior of the elliptic measure determines the
structure of the 9Q2.

2. The Laplacian on non-smooth domains

In this section we consider different classes of Wiener reg-
ular non-smooth domains: Lipschitz domains, uniform
domains with Ahlfors regular boundaries (these are a spe-
cial type of uniform domains satisfying the CDC, see Def-
inition 2.1 or (Al), (A2) and (Z)), non-tangentiallly acces-
sible (NTA) domains (see Definition 2.4) and chord-arc
domains (see Definition 2.6).

Definition 2.1. A domain Q) C R” with n > 3 is said to
satisfy the capacity density condition (CDC) if there ex-
ist constants cp, R > 0 such that for any g € 0Q) and any
r € (0,R), we have

Capy (B(q,r) N QC> > o2, (2.1)

For any compact set K, Capy(K) is defined as follows:

Cap,(K) = inf{/ |Vo|?dx: ¢ € CP(R"),K C {¢ > 1}0}

Definition 2.2. (JK) A domain ) C IR" satisfies the
Corkscrew condition if for some uniform constant ¢ > 0
and for every surface ball A := A(g,r) = QN B(q,7),
with g € 90 and 0 < r < diamd(), there is a ball
B(Xa,cr) C B(g,r) N Q. The point X5 C Q is called a
corkscrew point relative to A.

Definition 2.3. (JK) A domain () satisfies the Harnack
Chain condition if there is a uniform constant C such
that for every p > 0, A > 1, and every pair of points
X, X' € Qwith §(X), 6(X') > pand |X — X'| < Ap, there
is a chain of open balls By,...,By C Q, N < C(A), with
X € By, X' € By, ByN By # @ and C'diam B, <
dist (Bg,0Q)) < Cdiam Bg. The chain of balls is called a
Harnack Chain.

Definition 2.4. A domain Q) is a 1-sided NTA or uni-
form domain if it satisfies both the Corkscrew and Har-
nack Chain conditions. Furthermore, we say that () is
an NTA domain if it is 1-sided NTA and if, in addition,
Qext := R"” \ﬁ also satisfies the Corkscrew condition.

Definition 2.5. Given a domain () C R", we say that dQ) is
Ahlfors regular if there is some uniform constant C such
that

clrt<H™ 1 oQnB(qr) < Crt Y,
for all g € ) and 0 < r < diam 9Q).
Definition 2.6 (1-sided CAD and CAD). A 1-sided
chord-arc domain (1-sided CAD) is a 1-sided NTA do-

main with Ahlfors regular boundary. A chord-arc domain
(CAD) is an NTA domain with Ahlfors regular boundary.

2.2)
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Remarks 2.1. (1) Smooth domains, Lipschitz do-
mains and quasi-balls are NTA domains.
(2) CAD have uniformly rectifiable boundaries (see
(DS1), (DS2) for definitions and relevant results).
(3) Bounded Lipschitz domains are CAD.

We discuss the extent to which the harmonic measure dis-
tinguishes between these types of domains. Here is a sam-
ple of the questions we ask.

(1) What properties of w depend on the geometry of
) and more precisely on the fact that ) is a uni-
form domain with Ahlfors regular boundary?

(2) In this case what is the relationship between ¢
and w?

(8) Does the behavior of w with respect to ¢ deter-
mine the geometry of the boundary?

To illustrate the type of results we have in mind we cite be-
low a couple of authors who laid the foundation of what
has become a booming field.

In 1970 Hunt and Wheeden (HW) proved that on a
bounded connected Lipschitz domain the harmonic mea-
sure w is doubling, i.e. there exists a constant C > 0 such
that for all g € 002 and 0 < r < diam O

w(B(g,2r)) < Cw(B(q,1)). (2.3)

In 1977 Dahlberg (D1) showed that on a bounded Lips-
chitz domain w < ¢ and w € B,(v), i.e. the Radon-
Nikodym derivative of w with respect to o, k = dd—‘;’ sat-
isfies a reverse Holder inequality with exponent 2. More

precisely for g € 0Q) and r € (0, diam Q)

1/2
1 / ) 1 /
. k*d <C—i— kdo,
<U(B(q,r)) B(g,1) U) =B Joan”

(24)
where k = ‘ZI—‘(‘T’ is the Poisson kernel. In particular w €
Ao () = Up>1Bp(c), which means that w and o are

quantitatively mutually absolutely continuous.

Motivated by the work in (HW) in 1982 Jerison and Kenig
(JK) introduced the notion of NTA domains and proved
that on an bounded NTA domain: 1) the elliptic measure
wy, of L as in (1.2) is doubling; 2) the non-tangential limit
of the solution of (1.1) at the boundary exists and coin-
cides with f wr-a.e (i.e u = f on dQ), if f is Lipschitz, u
is Holder continuous in Q; 3) the uniform boundary Har-
nack principle holds, i.e. the ratio of 2 non-negative solu-
tions which vanish on an open piece of the boundary is bounded
and 4) CEMS (CFMS) holds: i.e. the density ratio of el-
liptic measure is comparable to the “normal derivative” of the
Green function toward the boundary. These four properties
were known to hold on Lipschitz domains but the fact that
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they held independently of the differential structure of the
boundary raised many questions (KT1). In 2004 Aikawa
(A1) provided a characterization of uniform domains with
CDC in terms of the boundary behavior of harmonic func-
tions and harmonic measure. Aikawa’s results fit in the
free boundary regularity theory as they describe the ge-
ometry of the domain in terms of the canonical harmonic
functions associated to it. To some extent this is the con-
verse problem than the one studied in (JK). In (HMT1)
the authors show that the results (JK) can be extended to
uniform domains satisfying the CDC. Thus in particular
to uniform domains with Ahlfors regular boundaries (see

(2)).

Dahlberg’s work raised a fundamental question: on a Lip-
schitz domain, for what type of operators L = —div(AV)
where A satisfies (1.2) is wy € Aw(0)? Examples ap-
peared in (MMS) and (MM) exhibit Lipschitz domains
and operators L for which w and ¢ are mutually singular.
In (CFK) the authors provide a characterization of opera-
tors with continuous coefficients on the unit ball for which
wy, and ¢ are mutually absolutely continuous. Dahlberg’s
work and these examples generated a wealth of activity
which would be described briefly in Section 3.

The first results generalizing Dahlberg’s result concerning
harmonic measure to non Lipschitz domains appeared in
(DJ) and (S) where the authors proved that if (2 is a CAD
then the harmonic measure w € A (0). As the field has
evolved, the focus has turned to the question of what does
the fact that w € A (c) imply about the geometry of ()?
Very recently several authors have started also looking at
the question of what geometric information about ) is
encoded in the fact that w; € Ac(0) and whether this
depends on the operator L. See Section 3.

We finish this section by highlighting a couple of recent
results in this area concerning the relationship between
the properties of the harmonic measure and the geome-
try of the boundary. The first one provides a necessary
and sufficient condition for quantitative absolute continu-
ity (in the form of the Ao property) of harmonic measure
with respect to surface measure. The second provides a
sufficient condition (in terms of the behavior of harmonic
measure with respect to surface measure) to guarantee
rectifiability, which should be understood as a statement
about the regularity of the boundary. In fact, E C R”,
is rectifiable (more precisely (n — 1)-rectifiable) if it can
be included in a countable union of Lipschitz images of
R”~! union a set of #"~! measure 0 (see (EG)). Uniform
rectifiability is a quantitative version of rectifiability (see
(DS1), (DS2)).
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Theorem 2.1. Suppose that Q) C R" is a uniform domain,
with Ahlfors regular boundary. Then the following are equiva-
lent:

(1) 9Q) is uniformly rectifiable.

(2) Q) is an NTA domain, and hence, a chord-arc domain
(CAD).

(3) we Aw(0o).

As mentioned above, the implication (2) = (3) was
proved independently in (DJ]) and in (S), while (3) =
(1) appears in (HMU), and (1) = (2) was proved in
(AHMNT).

Theorem 2.2. (AHMMMTV2) Given an open connected set
Q C R*, and E C 9Q with H"~1(E) < oo absolute conti-
nuity of the harmonic measure w with respect to the Hausdorff
measure restricted to E (ie. w < H""'L E) implies that
w L E is rectifiable.

For further information of the type of research carried for-
ward in this area see also (AHMMMTV1), (ABHM), (HL),
(HLMN), (HM1), (HM2), (HMM), (HMMTV), (KT1),
(KT2), (KT3).

3. Second order divergence form elliptic oper-
ators on non-smooth domains

In this section we describe some of the contributions to
the problem of characterizing the operators L for which
wr € Aw(0). There are several distinct approaches to this
question.

The first approach begins with the work of Dahlberg,
(D2), and involves the perturbation theory for elliptic op-
erators on Lipschitz domains. The initial observation is
that if two uniformly elliptic second order divergence
form operators Ly = —div(ApV) and L1 = —div(4A,V)
coincide in a neighborhood of the boundary of a Lipschitz
domain Q) (i.e. Ay = A7 near dQ)) then wy € A (0) if and
only if w; € A (). Here w; is the elliptic measure of
L; in Q. In (D2) the author showed that on a Lipschitz
domain Q) if the deviation function, defined by,

a(X) = sup{|A1(Y) — Ap(Y)|: Y € B(X,8(X)/2)} (1)
where 6(X) is the distance of X to d(), satisfies

1/2
X} =0

(3.2)
then wy € A (0) if and only if wy € Aw(0). Dahlberg’s
proof is very ingenious and has been used successfully

lim sup su {*/ az(X)
H00<rESqea% a(B(q,7)) JB(grna 9(X)
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to refine his results (see (E) and (MPT2)). Nevertheless
the fact the hypothesis included a smallness assumption
(that is that the limit as s — 0 of the above quantity be
0) puzzled the experts for some time. In 1991 R. Feffer-
man, Kenig and Pipher showed, using techniques from
harmonic analysis, that the smallness condition is not nec-
essary. The following definition allows us to state this im-
portant result.

Definition 3.1. Let () be a uniform domain with Ahlfors
regular boundary. Let Ly = —div(AoV) and L; =
—div(A1V) be such that Ay and A; satisfy (1.2), L; is
a perturbation of Ly if

1 / a2(X) }1/ 2
su su — 7dX < 00,
0<r<di§m0qeal?) { ‘T(B(W)) B(g,r)NQ 5(X)
(3.3)

Theorem 3.1. (FKP) Let ) be a Lipschitz domain. Let L,
be a perturbation of Ly then wy € Aco(do) if and only if
wp € As(do).

Currently similar results are available for CAD (MPT1).
On going work indicates that they also hold on uniform
domains with Ahlfors regular boundaries. See (CHM)
and (AHMT).

Other approaches to the question of whether the ellip-
tic measure wy, on a Lipschitz domain or a CAD is an
Aco-weight with respect to o, focus on either the behav-
ior of solutions with specific boundary data ((DKP), (Z),
(KKiPT)), the structure of A (see for example (KKoPT),
(HKMP), (KKiPT)) or the oscillation A. In terms of the os-
cillation the key point is to control the behavior of A near
the boundary. We present below a result that illustrates
this well.

Theorem 3.2. (KP) Let (O C R" be a connected Lipschitz do-
main. Let A(X) = (a;j(X))1<ij<n be a real matrix such that
a;j € L%(Q) for 1 <i,j < n, and A is uniformly elliptic (see
(1.2)) Suppose further that A satisfies the following conditions:

(a) ||IVA]| ‘5HL°°(Q) < 00, where 5(X) = dist (X, 9Q0).

(b) V A satisfies the Carleson measure estimate:

I ) .
o(B(x,7)) //B(x,r)mﬂ [VA(X)[70(X) dX < 0.

(3.4)

sup

x€0Q)
0<r<diamoQ)

Then wy € Awo(0).

Using the work in (DJ) a simple argument shows that The-
orem 3.2 also holds on CADs. A central question in the
field, which is under active investigation, is whether for

Analysis and geometry on non-smooth domains

operators satisfying the hypothesis of Theorem 3.2, a char-
acterization like the one provided in Theorem 2.1 holds.
The proof of Theorem 2.2 depends very deeply on the
fact that the operator is the Laplacian, efforts are under-
way to prove similar results for more general operators
using tools from Geometric Measure Theory rather than
Harmonic Analysis. See (HMT2), (AGMT), (TZ).
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