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Abstract

Regular and chaotic test particle motion in axially symmetric gravitational fields due to bodies with
quadrupolar and octupolar deformation are studied using Poincaré surfaces of section. We find that
inclusion of the octupolar term induces a distortion in the KAM curves corresponding to regular tra-
jectories, as well as an increasing in chaoticity. The fact the switching on of the octupolar moment it
increases chaoticity and leads to the apparition of spindle torus, can be seen even in the case corresponding
to oblate deformation, which commonly presents regular motion. Thus, the results here obtained are
the generalization, for the case of Newtonian gravity, of those previously obtained by Heiss, W. D.,

Nazmitdinov R. G. & Radu, S. (1994) and Li, J. (1998) for harmonic oscillators.
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Movimiento caótico y regular alrededor de objetos con deformación cuadrupolar y octupolar.

Resumen

Movimiento regular y caótico de part́ıculas de prueba en campos gravitacionales axialmente simétricos
debido a cuerpos con deformación cuadrupolar y octupolar es estudiado usando superficies de sección de
Poincaré. Encontramos que la inclusión del término octupolar induce una distorsión en las curvas KAM
correspondiente a trayectorias regulares, aśı como un aumento en la caoticidad. El hecho de que la activación
del momento octupolar incremente la caoticidad y lleve a la aparición de regiones inestables, puede ser visto
aún en el caso correspondiente a deformación oblata, la cual comúnmente presenta movimiento regular.
Aśı, los resultados aqúı obtenidos son la generalización, para el caso de gravedad Newtoniana, de los
obtenidos previamente por Heiss, W. D., Nazmitdinov, R. G. & Radu, S. (1994) y Li, J. (1998)
para osciladores armónicos.

Palabras clave: Dinámica estelar; galaxias: cinemática y dinámica; dinámica caótica.

Introduction

As is suggested by a wide variety of observational evidences,
many astrophysical objects can be modeled as axially symmet-
ric bodies with prolate or oblate deformation, see Cooray,

A. R. (2000), Davies, R. L. & Birkinshaw, M. (1986),
Fasano, G. & Vio, R. (1991) and Moura, A. & Lete-

lier, P. S. (2000). As an example, it is known that the Earth
has non vanishing quadrupolar and octupolar moments, as a

consequence of its oblate shape (Boccaletti, D. & Pucacco,

G., 2004). Also, many galaxies with a large disc component
can be assumed as axisymmetric oblate bodies with a large
quadrupolar moment and, in some cases, with a significant oc-
tupolar deformation due to the remaining components like the
halo (Helmi, A., 2004).

Likewise, there are galaxy clusters with a cigarlike shape
(Cooray A. R., 2000) and many dwarf galaxies that can be
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1Departamento de Ciencias Básicas, Universidad Santo Tomás, Bucaramanga, Colombia
2Escuela de F́ısica, Universidad Industrial de Santander, Bucaramanga, Colombia

Abstract

Regular and chaotic test particle motion in axially symmetric gravitational fields due to bodies with
quadrupolar and octupolar deformation are studied using Poincaré surfaces of section. We find that
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considered as nearly axisymmetric prolate deformed objects
(Ryden, B. S., 1996) with a non negligible octupolar moment.
Also, some observational data on the sphericity of galaxy clus-
ters suggest that triaxial galaxy models are more consistent
with a prolate rather than an oblate distribution (Cooray A.

R., 2000). Other triaxial galaxy models with only quadrupole
approximations, have been built, e.g., by Schwarzschild, M.

(1979) and Aquilano et al. (2007). On the other hand, the
study of the analytical treatment of bifurcations of families
of resonant thin tubes in axisymmetric galactic potentials was
considered by Pucacco, G. (2009).

There are also models of oblate and prolate galaxies con-
structed through the dynamics of particles by numerical sim-
ulation of N-bodies (stars). These models of elliptical galaxies
are self-consistent and can be found through the surfaces of sec-
tion type box, tube and chaotic orbits, according to the effec-
tive potential (Contopoulos et al., 2002). Numerical models
are variable, but always aimed to describe their morphology,
surface luminosity profile, mass-light ratio, velocity dispersion
profile, the line-of-sight velocity distribution curve and dark
matter haloes (Capuzzo-Dolcetta et al., 2007, Jalali, M.

A. & Sobouti, Y., 1998, Jeon et al., 2009, Kimm, T. &

Yi, S. K., 2007, Sereno et al., 2006, Valluri et al., 2010,
Zhenglu, J. , 2009).

Now, although the quadrupolar moment is usually consid-
ered to be the major deviation from the spherical symmetry,
there are situations where the octupolar deformation play a
comparable role, from the molecular level (Hamamoto et

al., 1991, Frauendorf, S. & Pashkevich, V. V., 1993) to
the astrophysical context. There is evidence that dark matter
clusters and groups may have substructure with a significant
octupole deformation (Irwin, J. & Shmakova, M., 2006),
which can be revealed by studying the motion of freely falling
objects.

In consequence, the motion of test particles around such
stellar objects is a problem of wide physical interest. The case
of attraction centers described by monopolar plus quadrupo-
lar terms has been extensively studied, from a classical and
relativistic standpoint, showing that the inclusion of external
multipolar moments can induce chaos (Guéron, E. & Lete-

lier, P. S., 2001, 2002). In Newtonian gravity, as well as in
general relativity, chaos can be found when the source has pro-
late deformation and the chaoticity grows by increasing the
quadrupolar moment. On the other hand, it seems to be that
the case corresponding to oblate deformation does not lead to
chaotic motion, indeed for a very large quadrupolar deforma-
tion. However, inclusion of octupolar deformation can also in-
duce chaos, as it was shown by Heiss, W. D., Nazmitdinov,

R. G. & Radu, S. (1994) and Li, J. (1998) in the case of an
harmonic oscillator.

In this paper, we focus on astrophysical objects charac-
terized by a non negligible octupolar moment in equilibrium
(comparable with the quadrupolar deformation), so they can
be described by a time independent potential. There are two
important examples: axisymmetric galaxies with a prominent
disc surrounded by a deformed halo, and a prolate deformed
cluster of galaxies composed by an amount of dark matter with
substructure (Irwin, J. & Shmakova, M., 2006). In both
cases, the dark component is responsible for the octupolar con-
tribution and, as we shall show, it introduces new features in
the orbital behavior of test particles.

We investigate the test particle motion in axially symmet-
ric gravitational potentials that are the sum of monopolar,
quadrupolar and octupolar terms (only external multipole mo-
ments will be considered). We analyze the effect that octupole
deformation introduces in the phase-space structure associated
to orbits. The paper is organized as follows. First, we define
the form of the gravitational potential, present the Newtonian
equations of motion, and show that the motion is restricted to a
three-dimensional phase-space. Then, we perform the analysis
by examining how the structure of the Poincaré surfaces of sec-
tion is determined by the octupolar moment. So we find that,
even in the case of oblate deformation, modest values of the oc-
tupolar moment induce significant changes in the phase-space
structure. Finally, we summarize our main results.

The Gravitational Potential

Suppose that we have a known mass distribution and we want
to find the potential or field outside the region where the source
is. Consequently, the gravitational potential Φ that we are con-
sidering is a solution of the Laplace’s equation (Arfken and

Weber, 2005)

∇2Φ = 0.

Consider a distribution of mass ρ(�r ′), confined to a re-
gion with r < R (with ∆m the mass in a small volume
∆V = ∆x∆y∆z) at the point �r′, thus ∆m = ρ(�r ′)∆V .
Let’s expand the resulting gravitational potential for r > R
(Griffiths, D., 1999, Jackson, J. D., 1998)

Φ(�r) = −G

∫

V

ρ(�r ′) d3x ′

| �r − �r ′ | ,

where G is the gravitational constant and d3x ′ = dx ′ dy ′ dz ′

is a three-dimensional volume element at �r ′.
To define the multipolar moments, we develop an expansion

of the gravitational potential of an arbitrary localized mass
distribution in powers of | �r − �r ′ |−1, that is

Φ(�r) ∼
∞
∑

n=0

1

rn+1

∫

(

r ′
)n

Pn(cos θ
′) ρ(�r ′) d3x ′ ,
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∆V = ∆x∆y∆z) at the point �r′, thus ∆m = ρ(�r ′)∆V .
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considered as nearly axisymmetric prolate deformed objects
(Ryden, B. S., 1996) with a non negligible octupolar moment.
Also, some observational data on the sphericity of galaxy clus-
ters suggest that triaxial galaxy models are more consistent
with a prolate rather than an oblate distribution (Cooray A.

R., 2000). Other triaxial galaxy models with only quadrupole
approximations, have been built, e.g., by Schwarzschild, M.

(1979) and Aquilano et al. (2007). On the other hand, the
study of the analytical treatment of bifurcations of families
of resonant thin tubes in axisymmetric galactic potentials was
considered by Pucacco, G. (2009).

There are also models of oblate and prolate galaxies con-
structed through the dynamics of particles by numerical sim-
ulation of N-bodies (stars). These models of elliptical galaxies
are self-consistent and can be found through the surfaces of sec-
tion type box, tube and chaotic orbits, according to the effec-
tive potential (Contopoulos et al., 2002). Numerical models
are variable, but always aimed to describe their morphology,
surface luminosity profile, mass-light ratio, velocity dispersion
profile, the line-of-sight velocity distribution curve and dark
matter haloes (Capuzzo-Dolcetta et al., 2007, Jalali, M.

A. & Sobouti, Y., 1998, Jeon et al., 2009, Kimm, T. &

Yi, S. K., 2007, Sereno et al., 2006, Valluri et al., 2010,
Zhenglu, J. , 2009).

Now, although the quadrupolar moment is usually consid-
ered to be the major deviation from the spherical symmetry,
there are situations where the octupolar deformation play a
comparable role, from the molecular level (Hamamoto et

al., 1991, Frauendorf, S. & Pashkevich, V. V., 1993) to
the astrophysical context. There is evidence that dark matter
clusters and groups may have substructure with a significant
octupole deformation (Irwin, J. & Shmakova, M., 2006),
which can be revealed by studying the motion of freely falling
objects.

In consequence, the motion of test particles around such
stellar objects is a problem of wide physical interest. The case
of attraction centers described by monopolar plus quadrupo-
lar terms has been extensively studied, from a classical and
relativistic standpoint, showing that the inclusion of external
multipolar moments can induce chaos (Guéron, E. & Lete-

lier, P. S., 2001, 2002). In Newtonian gravity, as well as in
general relativity, chaos can be found when the source has pro-
late deformation and the chaoticity grows by increasing the
quadrupolar moment. On the other hand, it seems to be that
the case corresponding to oblate deformation does not lead to
chaotic motion, indeed for a very large quadrupolar deforma-
tion. However, inclusion of octupolar deformation can also in-
duce chaos, as it was shown by Heiss, W. D., Nazmitdinov,

R. G. & Radu, S. (1994) and Li, J. (1998) in the case of an
harmonic oscillator.

In this paper, we focus on astrophysical objects charac-
terized by a non negligible octupolar moment in equilibrium
(comparable with the quadrupolar deformation), so they can
be described by a time independent potential. There are two
important examples: axisymmetric galaxies with a prominent
disc surrounded by a deformed halo, and a prolate deformed
cluster of galaxies composed by an amount of dark matter with
substructure (Irwin, J. & Shmakova, M., 2006). In both
cases, the dark component is responsible for the octupolar con-
tribution and, as we shall show, it introduces new features in
the orbital behavior of test particles.

We investigate the test particle motion in axially symmet-
ric gravitational potentials that are the sum of monopolar,
quadrupolar and octupolar terms (only external multipole mo-
ments will be considered). We analyze the effect that octupole
deformation introduces in the phase-space structure associated
to orbits. The paper is organized as follows. First, we define
the form of the gravitational potential, present the Newtonian
equations of motion, and show that the motion is restricted to a
three-dimensional phase-space. Then, we perform the analysis
by examining how the structure of the Poincaré surfaces of sec-
tion is determined by the octupolar moment. So we find that,
even in the case of oblate deformation, modest values of the oc-
tupolar moment induce significant changes in the phase-space
structure. Finally, we summarize our main results.

The Gravitational Potential

Suppose that we have a known mass distribution and we want
to find the potential or field outside the region where the source
is. Consequently, the gravitational potential Φ that we are con-
sidering is a solution of the Laplace’s equation (Arfken and

Weber, 2005)

∇2Φ = 0.

Consider a distribution of mass ρ(�r ′), confined to a re-
gion with r < R (with ∆m the mass in a small volume
∆V = ∆x∆y∆z) at the point �r′, thus ∆m = ρ(�r ′)∆V .
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where G is the gravitational constant and d3x ′ = dx ′ dy ′ dz ′

is a three-dimensional volume element at �r ′.
To define the multipolar moments, we develop an expansion
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the astrophysical context. There is evidence that dark matter
clusters and groups may have substructure with a significant
octupole deformation (Irwin, J. & Shmakova, M., 2006),
which can be revealed by studying the motion of freely falling
objects.

In consequence, the motion of test particles around such
stellar objects is a problem of wide physical interest. The case
of attraction centers described by monopolar plus quadrupo-
lar terms has been extensively studied, from a classical and
relativistic standpoint, showing that the inclusion of external
multipolar moments can induce chaos (Guéron, E. & Lete-

lier, P. S., 2001, 2002). In Newtonian gravity, as well as in
general relativity, chaos can be found when the source has pro-
late deformation and the chaoticity grows by increasing the
quadrupolar moment. On the other hand, it seems to be that
the case corresponding to oblate deformation does not lead to
chaotic motion, indeed for a very large quadrupolar deforma-
tion. However, inclusion of octupolar deformation can also in-
duce chaos, as it was shown by Heiss, W. D., Nazmitdinov,

R. G. & Radu, S. (1994) and Li, J. (1998) in the case of an
harmonic oscillator.

In this paper, we focus on astrophysical objects charac-
terized by a non negligible octupolar moment in equilibrium
(comparable with the quadrupolar deformation), so they can
be described by a time independent potential. There are two
important examples: axisymmetric galaxies with a prominent
disc surrounded by a deformed halo, and a prolate deformed
cluster of galaxies composed by an amount of dark matter with
substructure (Irwin, J. & Shmakova, M., 2006). In both
cases, the dark component is responsible for the octupolar con-
tribution and, as we shall show, it introduces new features in
the orbital behavior of test particles.

We investigate the test particle motion in axially symmet-
ric gravitational potentials that are the sum of monopolar,
quadrupolar and octupolar terms (only external multipole mo-
ments will be considered). We analyze the effect that octupole
deformation introduces in the phase-space structure associated
to orbits. The paper is organized as follows. First, we define
the form of the gravitational potential, present the Newtonian
equations of motion, and show that the motion is restricted to a
three-dimensional phase-space. Then, we perform the analysis
by examining how the structure of the Poincaré surfaces of sec-
tion is determined by the octupolar moment. So we find that,
even in the case of oblate deformation, modest values of the oc-
tupolar moment induce significant changes in the phase-space
structure. Finally, we summarize our main results.

The Gravitational Potential

Suppose that we have a known mass distribution and we want
to find the potential or field outside the region where the source
is. Consequently, the gravitational potential Φ that we are con-
sidering is a solution of the Laplace’s equation (Arfken and
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∇2Φ = 0.

Consider a distribution of mass ρ(�r ′), confined to a re-
gion with r < R (with ∆m the mass in a small volume
∆V = ∆x∆y∆z) at the point �r′, thus ∆m = ρ(�r ′)∆V .
Let’s expand the resulting gravitational potential for r > R
(Griffiths, D., 1999, Jackson, J. D., 1998)

Φ(�r) = −G

∫

V

ρ(�r ′) d3x ′

| �r − �r ′ | ,
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where θ ′ is the angle between �r and �r ′, and Pn is the Legendre
polynomial of order n. The above expression in explicit form
is

Φ(�r) ∼ 1

r

∫

ρ(�r ′) d3x ′ +
1

r2

∫

r ′ cos θ ′ ρ(�r ′) d3x ′ + · · ·

The term n = 0 (monopole), is the mass of the source,
n = 1 should be the mass dipole, the third term is the mass
quadrupole and so on (according to 2n poles). However, the
mass dipole and the mass quadrupole do not have an analog in
gravitation because there is not a counterpart −M to form the
mass dipole. Evidently, the potential of a quadrupole goes like
1/r3 and as 1/r4 in an octupole, as we might have anticipated.

The expression that includes all the terms of exact devel-
opment of the gravitational potential considering cylindrical
symmetry can be written as (Fernandez, A. , 2005)

Φ(�r) =
−GM

r

(

1−
∞
∑

n=2

Cn

rn
Pn(cos θ)

)

,

where the constants Cn are related with the multipole moments
of mass, and M is the mass of the source. Moreover, the terms
with n odd are asymmetric respect to the north and the south,
e.g. C3 is related with objects in shape of pear (octupole). The
term corresponding to n = 2 is associated with the flattened
or elongated deformation of the objects.

The Equations of Motion

Consider a test particle moving in the axially symmetric gravi-
tational field generated by a stellar body with quadrupolar and
octupolar deformation. In cylindrical coordinates (R, z, ϕ), the
potential has the form (Binney and Tremaine, 2008)

Φ(R, z) = − α√
R2 + z2

− β(2z2 −R2)

2(R2 + z2)
5

2

− γ(2z3 − 3zR2)

2(R2 + z2)
7

2

, (1)

where α is the monopole term, which is equals to Gm, with
m the total mass of the source and G the gravitational con-
stant. The quadrupolar term, denoted by β, usually represents
the major deviation from spherical symmetry. In particular, if
β > 0 the source has prolate deformation and if β < 0 we have
the case corresponding to oblate deformation. The octupolar
moment γ describes the asymmetry of the source with respect
to the equatorial plane, i.e. its “shape of pear” deformation.

Both β and γ are related to the source’s density ρ(R, z)
through the equations (Binney and Tremaine, 2008)

β = 2πG
∫

∞

0
r′4dr′

∫ π

0
dθ′ sin θ′P2(cos θ

′)ρ(r′, θ′), (2)

γ = 2Gπ
∫

∞

0
r′5dr′

∫ π

0
dθ′ sin θ′P3(cos θ

′)ρ(r′, θ′), (3)

where we have used spherical coordinates r =
√
R2 + z2,

cos θ = z/
√
R2 + z2 and Pl denotes the Legendre polynomial

of order l.
The physical interest to analyze other terms of the multi-

polar expansion (quadrupolar and octupolar terms), is based
in that they are directly related to the astrophysical objects in
rotation or having a pear-shaped deformation, or both. When
celestial objects have a non-negligible rotation, this produces
an oblate deformation between the north and south poles, i.e.
flattened at the poles as is the case of Earth. The contribution
of the mass quadrupolar is extremely important for motion of
test particle close to celestial object or artificial satellites close
to Earth. Due to change of mass density, the astrophysical
objects tend to be deformed, thus in the special case of Earth
the octupolar term is necessary due to his pear form. In the
context of general relativity, the mass quadrupole moment is
important, due to that if this varies over time, it can cause
gravitational radiation, equal to the electromagnetic radiation
generated by oscillating electric or magnetic dipoles and higher
order multipoles. Although, only quadrupole and higher mo-
ments (octupole) are known to can radiate gravitationally.

The motion of a test particle in a gravitational field de-
scribed by (1), obeys the relations (López-Suspes, F. &

González, G. A., 2013)

Ṙ = VR, (4)

ż = Vz, (5)

V̇R = − ∂

∂R
Φeff (R, z), (6)

V̇z = − ∂

∂z
Φeff (R, z), (7)

where Φeff (R, z) is the effective potential, given by

Φeff (R, z) = Φ(R, z) +
ℓ2

2R2
. (8)

Here, ℓ = R2ϕ̇ is the axial specific angular momentum that is
conserved as a consequence of the axial symmetry. The second
integral of motion is the total specific energy

E =
1

2
(V 2

R + V 2
z ) + Φeff (R, z). (9)

According to eqs. (4)-(9), the motion is restricted to a three
dimensional phase space (R, z, VR). This fact enable us to in-
troduce the Poincaré surfaces of section method, in order to
investigate the trajectories of test particles. Note that the
orbit of particle is confined to the plane defined by the ef-
fective potential, known as meridional plane. The numerical
integration is performed through the Runge-Kutta method of
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where the constants Cn are related with the multipole moments
of mass, and M is the mass of the source. Moreover, the terms
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e.g. C3 is related with objects in shape of pear (octupole). The
term corresponding to n = 2 is associated with the flattened
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where α is the monopole term, which is equals to Gm, with
m the total mass of the source and G the gravitational con-
stant. The quadrupolar term, denoted by β, usually represents
the major deviation from spherical symmetry. In particular, if
β > 0 the source has prolate deformation and if β < 0 we have
the case corresponding to oblate deformation. The octupolar
moment γ describes the asymmetry of the source with respect
to the equatorial plane, i.e. its “shape of pear” deformation.

Both β and γ are related to the source’s density ρ(R, z)
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in that they are directly related to the astrophysical objects in
rotation or having a pear-shaped deformation, or both. When
celestial objects have a non-negligible rotation, this produces
an oblate deformation between the north and south poles, i.e.
flattened at the poles as is the case of Earth. The contribution
of the mass quadrupolar is extremely important for motion of
test particle close to celestial object or artificial satellites close
to Earth. Due to change of mass density, the astrophysical
objects tend to be deformed, thus in the special case of Earth
the octupolar term is necessary due to his pear form. In the
context of general relativity, the mass quadrupole moment is
important, due to that if this varies over time, it can cause
gravitational radiation, equal to the electromagnetic radiation
generated by oscillating electric or magnetic dipoles and higher
order multipoles. Although, only quadrupole and higher mo-
ments (octupole) are known to can radiate gravitationally.
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The term n = 0 (monopole), is the mass of the source,
n = 1 should be the mass dipole, the third term is the mass
quadrupole and so on (according to 2n poles). However, the
mass dipole and the mass quadrupole do not have an analog in
gravitation because there is not a counterpart −M to form the
mass dipole. Evidently, the potential of a quadrupole goes like
1/r3 and as 1/r4 in an octupole, as we might have anticipated.
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where the constants Cn are related with the multipole moments
of mass, and M is the mass of the source. Moreover, the terms
with n odd are asymmetric respect to the north and the south,
e.g. C3 is related with objects in shape of pear (octupole). The
term corresponding to n = 2 is associated with the flattened
or elongated deformation of the objects.

The Equations of Motion

Consider a test particle moving in the axially symmetric gravi-
tational field generated by a stellar body with quadrupolar and
octupolar deformation. In cylindrical coordinates (R, z, ϕ), the
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where α is the monopole term, which is equals to Gm, with
m the total mass of the source and G the gravitational con-
stant. The quadrupolar term, denoted by β, usually represents
the major deviation from spherical symmetry. In particular, if
β > 0 the source has prolate deformation and if β < 0 we have
the case corresponding to oblate deformation. The octupolar
moment γ describes the asymmetry of the source with respect
to the equatorial plane, i.e. its “shape of pear” deformation.

Both β and γ are related to the source’s density ρ(R, z)
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in that they are directly related to the astrophysical objects in
rotation or having a pear-shaped deformation, or both. When
celestial objects have a non-negligible rotation, this produces
an oblate deformation between the north and south poles, i.e.
flattened at the poles as is the case of Earth. The contribution
of the mass quadrupolar is extremely important for motion of
test particle close to celestial object or artificial satellites close
to Earth. Due to change of mass density, the astrophysical
objects tend to be deformed, thus in the special case of Earth
the octupolar term is necessary due to his pear form. In the
context of general relativity, the mass quadrupole moment is
important, due to that if this varies over time, it can cause
gravitational radiation, equal to the electromagnetic radiation
generated by oscillating electric or magnetic dipoles and higher
order multipoles. Although, only quadrupole and higher mo-
ments (octupole) are known to can radiate gravitationally.
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dimensional phase space (R, z, VR). This fact enable us to in-
troduce the Poincaré surfaces of section method, in order to
investigate the trajectories of test particles. Note that the
orbit of particle is confined to the plane defined by the ef-
fective potential, known as meridional plane. The numerical
integration is performed through the Runge-Kutta method of
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∞
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Cn

rn
Pn(cos θ)

)

,

where the constants Cn are related with the multipole moments
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The Equations of Motion
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R2 + z2

− β(2z2 −R2)

2(R2 + z2)
5

2

− γ(2z3 − 3zR2)

2(R2 + z2)
7

2

, (1)

where α is the monopole term, which is equals to Gm, with
m the total mass of the source and G the gravitational con-
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β = 2πG
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∞
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r′4dr′
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γ = 2Gπ
∫

∞
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where we have used spherical coordinates r =
√
R2 + z2,

cos θ = z/
√
R2 + z2 and Pl denotes the Legendre polynomial

of order l.
The physical interest to analyze other terms of the multi-
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González, G. A., 2013)
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∂z
Φeff (R, z), (7)
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2R2
. (8)

Here, ℓ = R2ϕ̇ is the axial specific angular momentum that is
conserved as a consequence of the axial symmetry. The second
integral of motion is the total specific energy

E =
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z ) + Φeff (R, z). (9)

According to eqs. (4)-(9), the motion is restricted to a three
dimensional phase space (R, z, VR). This fact enable us to in-
troduce the Poincaré surfaces of section method, in order to
investigate the trajectories of test particles. Note that the
orbit of particle is confined to the plane defined by the ef-
fective potential, known as meridional plane. The numerical
integration is performed through the Runge-Kutta method of
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Figure 1. Surfaces of section for some orbits with ℓ = 0.9, E = −0.4, in a potential characterized by α = 1, β = 0.3
(prolate deformation), and (a) γ = 0, (b) γ = 0.02, and (c) γ = 0.04. In (c), we have a prominent chaotic zone enclosing
three “spindle” KAM curves.

fourth order and by checking that energy is conserved within
a tolerance of 10−10. The initial conditions necessary to solve
the differential equations system of motion can be obtained as
follows: we select the conditions for the initial positions, i.e.
R(t = 0) = R0, z(t = 0) = z0, according to the contour of
the effective potential, which are obtained when total specific
energy is equal to a constant. Then an initial condition is fixed
for the vertical speed z(t = 0) = z0, and finally we can deter-
mine from the constraint (9), the initial condition for the radial

velocity Ṙ(t = 0) = Ṙ0.

Chaos Induced by Octupolar Deformation

Currently exist reports on the chaotic behavior of test particles
moving around gravitational fields produced for superposition
of monopole and oblate quadrupole (Letelier et al., 2011).
Likewise there are numerical evidences that orbits of parti-
cles moving around a monopole plus an prolate quadrupole
are chaotic (Guéron, E. & Letelier, P. S., 2001). In Newto-
nian gravity has been studied chaotic behaviors through of test
particle of some configurations of matter that may have an in-
terest in astrophysics, like the investigation on the integrability
of oblique orbits of the test particles around gravitational fields
produced for superposition of black-hole and thin disk (Saa,
A. & Venegeroles, R., 1999), or around gravitational fields
generated of a monopole and a thick disk (Saa, A., 2000), and
gravitational field with dipoles (Ju-Hua, C. & Yong-Jiu,

W., 2003). Accordingly, we considered bodies with prolate or
oblate deformation plus octupolar moment, we presented some
surface of section for different values of octupolar term, one can

confirmed that the parameter of “shape-of-pear” deformation
induced a chaotic behavior.

In figure 1 we plot a typical z = 0 surface of section corre-
sponding to motion of a test particle in presence of a gravita-
tional field due to a prolate deformed source, whose octupolar
moment vanishes. We note a central and lateral regular regions
composed by ring tori (ring KAM curves). They are enclosed
by a chaotic region containing two small resonant islands near
its top and bottom edges. In figure 1(a) we show Poincaré
section for some orbits with ℓ = 0.9 and E = −0.4, in a po-
tential with α = 1, β = 0.3 and γ = 0. In figure 1(b) we
change the value of the octupolar moment (γ = 0.02), main-
taining the same prolate deformation. The resulting surface
of section presents a more prominent chaotic region, since in
this case the outer zones of resonant islands have overlapped.
The regular regions now contains “spindle” torus. They can
be viewed clearly in the central region and scarcely insinuated
in the lateral zone. In figure 1(c), as a consequence of increase
the octupolar moment to γ = 0.04, the chaotic region is more
prominent (the lateral regular zone has disappeared), as well
as the central spindle KAM curves. In this path we keep the
values ℓ = 0.9, E = −0.4, α = 1, β = 0.3. In this figure, we can
see as the inclusion of the octupolar term affect the structure
of phase space. We can see as the stable regions presents now
a stochastic behavior.

In figure 2 we show the effect caused by the progressive
rise in the octupolar deformation, starting from a regular pro-
late situation. In particular, we show the Poincaré section for
ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and the cases (a) γ = 0, (b)
γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each one, the or-
bits are generated by the initial conditions (i) z = 0, R = 0.91,
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Figure 1. Surfaces of section for some orbits with ℓ = 0.9, E = −0.4, in a potential characterized by α = 1, β = 0.3
(prolate deformation), and (a) γ = 0, (b) γ = 0.02, and (c) γ = 0.04. In (c), we have a prominent chaotic zone enclosing
three “spindle” KAM curves.

fourth order and by checking that energy is conserved within
a tolerance of 10−10. The initial conditions necessary to solve
the differential equations system of motion can be obtained as
follows: we select the conditions for the initial positions, i.e.
R(t = 0) = R0, z(t = 0) = z0, according to the contour of
the effective potential, which are obtained when total specific
energy is equal to a constant. Then an initial condition is fixed
for the vertical speed z(t = 0) = z0, and finally we can deter-
mine from the constraint (9), the initial condition for the radial

velocity Ṙ(t = 0) = Ṙ0.

Chaos Induced by Octupolar Deformation

Currently exist reports on the chaotic behavior of test particles
moving around gravitational fields produced for superposition
of monopole and oblate quadrupole (Letelier et al., 2011).
Likewise there are numerical evidences that orbits of parti-
cles moving around a monopole plus an prolate quadrupole
are chaotic (Guéron, E. & Letelier, P. S., 2001). In Newto-
nian gravity has been studied chaotic behaviors through of test
particle of some configurations of matter that may have an in-
terest in astrophysics, like the investigation on the integrability
of oblique orbits of the test particles around gravitational fields
produced for superposition of black-hole and thin disk (Saa,
A. & Venegeroles, R., 1999), or around gravitational fields
generated of a monopole and a thick disk (Saa, A., 2000), and
gravitational field with dipoles (Ju-Hua, C. & Yong-Jiu,

W., 2003). Accordingly, we considered bodies with prolate or
oblate deformation plus octupolar moment, we presented some
surface of section for different values of octupolar term, one can

confirmed that the parameter of “shape-of-pear” deformation
induced a chaotic behavior.

In figure 1 we plot a typical z = 0 surface of section corre-
sponding to motion of a test particle in presence of a gravita-
tional field due to a prolate deformed source, whose octupolar
moment vanishes. We note a central and lateral regular regions
composed by ring tori (ring KAM curves). They are enclosed
by a chaotic region containing two small resonant islands near
its top and bottom edges. In figure 1(a) we show Poincaré
section for some orbits with ℓ = 0.9 and E = −0.4, in a po-
tential with α = 1, β = 0.3 and γ = 0. In figure 1(b) we
change the value of the octupolar moment (γ = 0.02), main-
taining the same prolate deformation. The resulting surface
of section presents a more prominent chaotic region, since in
this case the outer zones of resonant islands have overlapped.
The regular regions now contains “spindle” torus. They can
be viewed clearly in the central region and scarcely insinuated
in the lateral zone. In figure 1(c), as a consequence of increase
the octupolar moment to γ = 0.04, the chaotic region is more
prominent (the lateral regular zone has disappeared), as well
as the central spindle KAM curves. In this path we keep the
values ℓ = 0.9, E = −0.4, α = 1, β = 0.3. In this figure, we can
see as the inclusion of the octupolar term affect the structure
of phase space. We can see as the stable regions presents now
a stochastic behavior.

In figure 2 we show the effect caused by the progressive
rise in the octupolar deformation, starting from a regular pro-
late situation. In particular, we show the Poincaré section for
ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and the cases (a) γ = 0, (b)
γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each one, the or-
bits are generated by the initial conditions (i) z = 0, R = 0.91,
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Figure 1. Surfaces of section for some orbits with ℓ = 0.9, E = −0.4, in a potential characterized by α = 1, β = 0.3
(prolate deformation), and (a) γ = 0, (b) γ = 0.02, and (c) γ = 0.04. In (c), we have a prominent chaotic zone enclosing
three “spindle” KAM curves.

fourth order and by checking that energy is conserved within
a tolerance of 10−10. The initial conditions necessary to solve
the differential equations system of motion can be obtained as
follows: we select the conditions for the initial positions, i.e.
R(t = 0) = R0, z(t = 0) = z0, according to the contour of
the effective potential, which are obtained when total specific
energy is equal to a constant. Then an initial condition is fixed
for the vertical speed z(t = 0) = z0, and finally we can deter-
mine from the constraint (9), the initial condition for the radial

velocity Ṙ(t = 0) = Ṙ0.

Chaos Induced by Octupolar Deformation

Currently exist reports on the chaotic behavior of test particles
moving around gravitational fields produced for superposition
of monopole and oblate quadrupole (Letelier et al., 2011).
Likewise there are numerical evidences that orbits of parti-
cles moving around a monopole plus an prolate quadrupole
are chaotic (Guéron, E. & Letelier, P. S., 2001). In Newto-
nian gravity has been studied chaotic behaviors through of test
particle of some configurations of matter that may have an in-
terest in astrophysics, like the investigation on the integrability
of oblique orbits of the test particles around gravitational fields
produced for superposition of black-hole and thin disk (Saa,
A. & Venegeroles, R., 1999), or around gravitational fields
generated of a monopole and a thick disk (Saa, A., 2000), and
gravitational field with dipoles (Ju-Hua, C. & Yong-Jiu,

W., 2003). Accordingly, we considered bodies with prolate or
oblate deformation plus octupolar moment, we presented some
surface of section for different values of octupolar term, one can

confirmed that the parameter of “shape-of-pear” deformation
induced a chaotic behavior.

In figure 1 we plot a typical z = 0 surface of section corre-
sponding to motion of a test particle in presence of a gravita-
tional field due to a prolate deformed source, whose octupolar
moment vanishes. We note a central and lateral regular regions
composed by ring tori (ring KAM curves). They are enclosed
by a chaotic region containing two small resonant islands near
its top and bottom edges. In figure 1(a) we show Poincaré
section for some orbits with ℓ = 0.9 and E = −0.4, in a po-
tential with α = 1, β = 0.3 and γ = 0. In figure 1(b) we
change the value of the octupolar moment (γ = 0.02), main-
taining the same prolate deformation. The resulting surface
of section presents a more prominent chaotic region, since in
this case the outer zones of resonant islands have overlapped.
The regular regions now contains “spindle” torus. They can
be viewed clearly in the central region and scarcely insinuated
in the lateral zone. In figure 1(c), as a consequence of increase
the octupolar moment to γ = 0.04, the chaotic region is more
prominent (the lateral regular zone has disappeared), as well
as the central spindle KAM curves. In this path we keep the
values ℓ = 0.9, E = −0.4, α = 1, β = 0.3. In this figure, we can
see as the inclusion of the octupolar term affect the structure
of phase space. We can see as the stable regions presents now
a stochastic behavior.

In figure 2 we show the effect caused by the progressive
rise in the octupolar deformation, starting from a regular pro-
late situation. In particular, we show the Poincaré section for
ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and the cases (a) γ = 0, (b)
γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each one, the or-
bits are generated by the initial conditions (i) z = 0, R = 0.91,
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Figure 1. Surfaces of section for some orbits with ℓ = 0.9, E = −0.4, in a potential characterized by α = 1, β = 0.3
(prolate deformation), and (a) γ = 0, (b) γ = 0.02, and (c) γ = 0.04. In (c), we have a prominent chaotic zone enclosing
three “spindle” KAM curves.

fourth order and by checking that energy is conserved within
a tolerance of 10−10. The initial conditions necessary to solve
the differential equations system of motion can be obtained as
follows: we select the conditions for the initial positions, i.e.
R(t = 0) = R0, z(t = 0) = z0, according to the contour of
the effective potential, which are obtained when total specific
energy is equal to a constant. Then an initial condition is fixed
for the vertical speed z(t = 0) = z0, and finally we can deter-
mine from the constraint (9), the initial condition for the radial

velocity Ṙ(t = 0) = Ṙ0.

Chaos Induced by Octupolar Deformation

Currently exist reports on the chaotic behavior of test particles
moving around gravitational fields produced for superposition
of monopole and oblate quadrupole (Letelier et al., 2011).
Likewise there are numerical evidences that orbits of parti-
cles moving around a monopole plus an prolate quadrupole
are chaotic (Guéron, E. & Letelier, P. S., 2001). In Newto-
nian gravity has been studied chaotic behaviors through of test
particle of some configurations of matter that may have an in-
terest in astrophysics, like the investigation on the integrability
of oblique orbits of the test particles around gravitational fields
produced for superposition of black-hole and thin disk (Saa,
A. & Venegeroles, R., 1999), or around gravitational fields
generated of a monopole and a thick disk (Saa, A., 2000), and
gravitational field with dipoles (Ju-Hua, C. & Yong-Jiu,

W., 2003). Accordingly, we considered bodies with prolate or
oblate deformation plus octupolar moment, we presented some
surface of section for different values of octupolar term, one can

confirmed that the parameter of “shape-of-pear” deformation
induced a chaotic behavior.

In figure 1 we plot a typical z = 0 surface of section corre-
sponding to motion of a test particle in presence of a gravita-
tional field due to a prolate deformed source, whose octupolar
moment vanishes. We note a central and lateral regular regions
composed by ring tori (ring KAM curves). They are enclosed
by a chaotic region containing two small resonant islands near
its top and bottom edges. In figure 1(a) we show Poincaré
section for some orbits with ℓ = 0.9 and E = −0.4, in a po-
tential with α = 1, β = 0.3 and γ = 0. In figure 1(b) we
change the value of the octupolar moment (γ = 0.02), main-
taining the same prolate deformation. The resulting surface
of section presents a more prominent chaotic region, since in
this case the outer zones of resonant islands have overlapped.
The regular regions now contains “spindle” torus. They can
be viewed clearly in the central region and scarcely insinuated
in the lateral zone. In figure 1(c), as a consequence of increase
the octupolar moment to γ = 0.04, the chaotic region is more
prominent (the lateral regular zone has disappeared), as well
as the central spindle KAM curves. In this path we keep the
values ℓ = 0.9, E = −0.4, α = 1, β = 0.3. In this figure, we can
see as the inclusion of the octupolar term affect the structure
of phase space. We can see as the stable regions presents now
a stochastic behavior.

In figure 2 we show the effect caused by the progressive
rise in the octupolar deformation, starting from a regular pro-
late situation. In particular, we show the Poincaré section for
ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and the cases (a) γ = 0, (b)
γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each one, the or-
bits are generated by the initial conditions (i) z = 0, R = 0.91,
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Figure 2. Surfaces of section for ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d)
γ = 0.06. In each case, they are generated by three orbits with initial conditions (i) z = 0, R = 0.91, VR = 0, (ii) z = 0,
R = 0.78, VR = 0, and (iii) z = 0, R = 1.16, VR = 0.18.

(a) (b) (c) (d)

Figure 3. Orbits in the meridional plane with initial conditions z = 0, R = 0.78, VR = 0 and the same parameters
considered above. Again we have the cases (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06.

VR = 0, (ii) z = 0, R = 0.78, VR = 0, and (iii) z = 0, R = 1.16,
VR = 0.18.

In figure 3 we display the trajectories in the meridional plane
with initial conditions z = 0, R = 0.78, VR = 0, and the
same parameters considered above. Again we have the cases
(a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. The fact
the switching on of the octupolar moment it increases chaotic-
ity and leads to the apparition of spindle torus, can be seen
even in the case corresponding to oblate deformation, which
commonly presents regular motion. In fact, some authors show
numerical evidence that particles moving around a monopole
plus an oblate quadrupole are not chaotic, however this result
has been recently corrected by Letelier et al. (2011).

Finally, in figure 4 we show the transition from regularity to
chaos by increasing γ. With E = −0.32, ℓ = 1.1 and β = −0.2,
we start from (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d)
γ = 0.06. The case (a) corresponds to a regular motion, the

case (b) is also regular but the KAM curves has been distorted
to spindles. In (c) the distortion is more prominent and finally,
in (d), we note the apparition of a chaotic region enclosing the
spindles.

Figure 5 shows the contours of the gravitational potential,
in all paths we consider α=1. In this plot we present the defor-
mation of the source due to changes in the multipole moments
of mass. To show the oblate deformation we consider β = −0.3
and for prolate deformation we chose β = 0.3 with octupolar
moment constant (γ = 0). Note that the octupolar deforma-
tion of the source begins to be appreciated for values close to
γ = 0.5, however the chaos can be observed for small values of
the octupolar moment: γ = 0.02 and γ = 0.04.

Observe that figure 1, figure 2 and figure 4 represent the
superposition of several solutions of the autonomous system
of differential equations (4) - (7). Each of the trajectories is
obtained by means of different initial conditions, in agreement
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Figure 1. Surfaces of section for some orbits with ℓ = 0.9, E = −0.4, in a potential characterized by α = 1, β = 0.3
(prolate deformation), and (a) γ = 0, (b) γ = 0.02, and (c) γ = 0.04. In (c), we have a prominent chaotic zone enclosing
three “spindle” KAM curves.

fourth order and by checking that energy is conserved within
a tolerance of 10−10. The initial conditions necessary to solve
the differential equations system of motion can be obtained as
follows: we select the conditions for the initial positions, i.e.
R(t = 0) = R0, z(t = 0) = z0, according to the contour of
the effective potential, which are obtained when total specific
energy is equal to a constant. Then an initial condition is fixed
for the vertical speed z(t = 0) = z0, and finally we can deter-
mine from the constraint (9), the initial condition for the radial

velocity Ṙ(t = 0) = Ṙ0.

Chaos Induced by Octupolar Deformation

Currently exist reports on the chaotic behavior of test particles
moving around gravitational fields produced for superposition
of monopole and oblate quadrupole (Letelier et al., 2011).
Likewise there are numerical evidences that orbits of parti-
cles moving around a monopole plus an prolate quadrupole
are chaotic (Guéron, E. & Letelier, P. S., 2001). In Newto-
nian gravity has been studied chaotic behaviors through of test
particle of some configurations of matter that may have an in-
terest in astrophysics, like the investigation on the integrability
of oblique orbits of the test particles around gravitational fields
produced for superposition of black-hole and thin disk (Saa,
A. & Venegeroles, R., 1999), or around gravitational fields
generated of a monopole and a thick disk (Saa, A., 2000), and
gravitational field with dipoles (Ju-Hua, C. & Yong-Jiu,

W., 2003). Accordingly, we considered bodies with prolate or
oblate deformation plus octupolar moment, we presented some
surface of section for different values of octupolar term, one can

confirmed that the parameter of “shape-of-pear” deformation
induced a chaotic behavior.

In figure 1 we plot a typical z = 0 surface of section corre-
sponding to motion of a test particle in presence of a gravita-
tional field due to a prolate deformed source, whose octupolar
moment vanishes. We note a central and lateral regular regions
composed by ring tori (ring KAM curves). They are enclosed
by a chaotic region containing two small resonant islands near
its top and bottom edges. In figure 1(a) we show Poincaré
section for some orbits with ℓ = 0.9 and E = −0.4, in a po-
tential with α = 1, β = 0.3 and γ = 0. In figure 1(b) we
change the value of the octupolar moment (γ = 0.02), main-
taining the same prolate deformation. The resulting surface
of section presents a more prominent chaotic region, since in
this case the outer zones of resonant islands have overlapped.
The regular regions now contains “spindle” torus. They can
be viewed clearly in the central region and scarcely insinuated
in the lateral zone. In figure 1(c), as a consequence of increase
the octupolar moment to γ = 0.04, the chaotic region is more
prominent (the lateral regular zone has disappeared), as well
as the central spindle KAM curves. In this path we keep the
values ℓ = 0.9, E = −0.4, α = 1, β = 0.3. In this figure, we can
see as the inclusion of the octupolar term affect the structure
of phase space. We can see as the stable regions presents now
a stochastic behavior.
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ℓ = 1.1, E = −0.32, α = 1, β = 0.2 and the cases (a) γ = 0, (b)
γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each one, the or-
bits are generated by the initial conditions (i) z = 0, R = 0.91,
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Figure 3. Orbits in the meridional plane with initial conditions z = 0, R = 0.78, VR = 0 and the same parameters
considered above. Again we have the cases (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06.

VR = 0, (ii) z = 0, R = 0.78, VR = 0, and (iii) z = 0, R = 1.16,
VR = 0.18.

In figure 3 we display the trajectories in the meridional plane
with initial conditions z = 0, R = 0.78, VR = 0, and the
same parameters considered above. Again we have the cases
(a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. The fact
the switching on of the octupolar moment it increases chaotic-
ity and leads to the apparition of spindle torus, can be seen
even in the case corresponding to oblate deformation, which
commonly presents regular motion. In fact, some authors show
numerical evidence that particles moving around a monopole
plus an oblate quadrupole are not chaotic, however this result
has been recently corrected by Letelier et al. (2011).

Finally, in figure 4 we show the transition from regularity to
chaos by increasing γ. With E = −0.32, ℓ = 1.1 and β = −0.2,
we start from (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d)
γ = 0.06. The case (a) corresponds to a regular motion, the

case (b) is also regular but the KAM curves has been distorted
to spindles. In (c) the distortion is more prominent and finally,
in (d), we note the apparition of a chaotic region enclosing the
spindles.

Figure 5 shows the contours of the gravitational potential,
in all paths we consider α=1. In this plot we present the defor-
mation of the source due to changes in the multipole moments
of mass. To show the oblate deformation we consider β = −0.3
and for prolate deformation we chose β = 0.3 with octupolar
moment constant (γ = 0). Note that the octupolar deforma-
tion of the source begins to be appreciated for values close to
γ = 0.5, however the chaos can be observed for small values of
the octupolar moment: γ = 0.02 and γ = 0.04.

Observe that figure 1, figure 2 and figure 4 represent the
superposition of several solutions of the autonomous system
of differential equations (4) - (7). Each of the trajectories is
obtained by means of different initial conditions, in agreement
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Figure 4. Surfaces of section for some orbits with ℓ = 1.1, E = −0.32, in a potential characterized by α = 1, β = −0.2
and (a) γ = 0, (b) γ = 0.02, (c) γ = 0.04, and (d) γ = 0.06. In each case, they are generated by three orbits with initial
conditions (i) z = 0, R = 1.4, VR = 0, (ii) z = 0, R = 0.74, VR = 0, and (iii) z = 0, R = 0.601, VR = 0.4.
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Figure 5. Contours of the effective potential. We consider the parameters α = 1, β = ±0.3 and γ = 0, 0.04, and 0.5 (
“shape-of-pear”).

with the KAM theorem: different initial conditions of the in-
tegrable Hamiltonian system will trace different invariant tori
in the phase space. When the trajectories in the figure 1, fig-
ure 3(a), and figure 4(a) intersect them do not represent the
same solution, every set of initial conditions is a torus in the
structure of phase space

Concluding Remarks

From a classical point of view, octupolar deformation in astro-
physical objects can introduce significant modifications to the
phase-space structure corresponding to test particles moving
around prolate or oblate centers of attraction. Apart from an
increasing in the chaoticity, the apparition of spindle torus in
regular regions is a remarkable effect caused by the asymmetry
of the source with respect to its equatorial plane. A larger equa-
torial asymmetry involves more distorted spindle KAM curves
and more prominent stochastic regions in the phase-space (See

figure 1 for the prolate situation, β = 0.3). This fact carries
dramatic consequences in the case of oblate deformed sources,
which usually are associated with regular motion. Here, chaos
emerges once we switch on the octupole moment. The results
here obtained are then the generalization, for the case of Newto-
nian gravity, of those previously obtained by Helmi, A. (2004)
and Li, J. (1998) for harmonic oscillators. In summary, we
show that may appear stochastic zones in the surfaces of sec-
tion due only to the existence of “shape-of-pear” deformation
in regions that previously were stable.

Contribution of the authors

All the authors have contributed in various degrees to the con-
ception of the work, to the research concept, to the analytical
methods used, to the drafting of the article, to the critical re-
vision of the article and to the final approval of the version to
be published.
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Guéron, E. & Letelier, P.S. (2002). Geodesic chaos around

quadrupolar deformed centers of attraction. Phys. Rev. E 66,
046611.

Hamamoto, I., Mottelson, B., Xie, H. & Zhang, X. Z. (1991).
Shell-structure and octupole instability in fermion systems. Z.
Phys. D 21, 163

Heiss, W. D., Nazmitdinov R. G. & Radu, S. (1994). Chaos
in axially symmetric potentials with octupole deformation. Phys.
Rev. Lett. 72, 2351.

Helmi, A. (2004). Is the dark halo of our Galaxy spherical. Mon.
Not. R. Astron. Soc. 351, 643.

Irwin, J. & Shmakova, M. (2006). Observation of small-scale
structure using sextupole lensing. Ap. J. 645, 17.

Jackson, J. D. (1998). Classical Electrodynamics. Third Edition.
Wiley Editorial.

Jalali, M. A. & Sobouti, Y. (1998). Some Analytical Re- sults
in Dynamics of Spheroidal Galaxies. Celestial Mech. Dynam. As-
tronom. 70, 255.

Jeon, M., Kim, S. S. & Ann, H. B. (2009). Galactic Warps in
Triaxial Halos. Ap. J. 696, 1899.

Ju-Hua, C. & Yong-Jiu, W. (2003). Chaos in a gravitational field
with dipoles. Chin. Phys. 12, 836.

Kimm, T. & Yi, S. K. (2007). Intrinsic axis ratio distribution of
early-type galaxies from the sloan digital sky survey. Ap. J. 670,
1048.

Letelier P.S., Ramos-Caro J. & López-Suspes F. (2011).
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