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Abstract

The submodular functions have shown their importance in the study and characterization of
multiple properties of finite topological spaces, from numeric values provided by such functions
(Sarria, Roa & Varela, 2014). However, the calculation of these values has been performed
manually or even using Hasse diagrams, which is not practical. In this article, we present some
algorithms that let us calculate some kind of polymatroid functions, specifically fU , fD, f and rA,
which define a topology, by using topogenous matrices.
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Cálculo de matrices y funciones submodulares asociadas a espacios topológicos finitos

Resumen

Las funciones submodulares han mostrado su importancia en el estudio y la caracterización
múltiples propiedades de los espacios topológicos finitos, a partir de valores numéricos propor-
cionados por dichas funciones (Sarria, Roa & Varela, 2014). Sin embargo, el cálculo de éstos
valores se ha realizado manualmente e incluso haciendo uso de diagramas de Hasse, lo que no es
práctico. En este art́ıculo, presentamos algunos algoritmos que nos permiten calcular cierta clase
de funciones polimatroides, espećıficamente fU , fD, f y rA, las cuales definen una topoloǵıa, por
medio del uso de matrices topogéneas.

Palabras clave: Espacios topológicos finitos, funciones submodulares, matriz topogénea, matriz
de Stong.

Introduction

Alexandroff proved that finite topological spaces are
in correspondence one-to-one with finite preorders
(Alexandroff, 1937), showing that such spaces can be
viewed from other mathematical structures. Likewise, Shi-
raki named as topogenous matrices the objects worked by
Krishnamurthy, in an attempt to count the topologies that
can be defined on a finite set (Krishnamurthy, 1966), a
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problem still unsolved. Moreover, such matrices provide
all the information about the topology of a finite space
(Shiraki, 1968), showing the relevance of these objects in
the topological context.

Recently, connections between submodular functions and
finite topological spaces have been developed (Abril,
2015), (Sarria et al., 2014), allowing to interpret many
topological concepts through numeric values provided by
such associated functions, which is really important if we
want to mechanize the verification of topological proper-
ties on subsets of an arbitrary finite space.
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de funciones polimatroides, espećıficamente fU , fD, f y rA, las cuales definen una topoloǵıa, por
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Palabras clave: Espacios topológicos finitos, funciones submodulares, matriz topogénea, matriz
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problem still unsolved. Moreover, such matrices provide
all the information about the topology of a finite space
(Shiraki, 1968), showing the relevance of these objects in
the topological context.

Recently, connections between submodular functions and
finite topological spaces have been developed (Abril,
2015), (Sarria et al., 2014), allowing to interpret many
topological concepts through numeric values provided by
such associated functions, which is really important if we
want to mechanize the verification of topological proper-
ties on subsets of an arbitrary finite space.

In view of the above, we regard some matrices, as to-
pogenous and Stong matrices defined in sections 2 and 3,
which are useful, for example, in the study of lattice of
all topologies on a fixed set, and we link such matrices
with particular submodular functions (fU , fD, f and rA),
important in the finite topological spaces context, by al-
gorithms created to improve the computations shown in
(Abril, 2015) and (Sarria et al., 2014).

From now on, we shall use exclusively the symbol X to
denote a set of n elements X = {x1, . . . , xn}, unless ex-
plicitly stated otherwise. We define In = {1, 2, . . . , n} and
for a permutation σ of In, we use Pσ to denote the matrix
whose entries satisfy

[Pσ]ij = δ(i, σ(j))

where δ is the Kronecker delta.

Topogenous matrix

Given a finite topological space (X,T ), denote by Uk the
minimal open set containing xk:

Uk =
⋂

xk∈E∈T

E

and consider the colection U = {U1, . . . , Un}, which is the
minimal basis for the space in the sense that U is contained
in any other basis for the topology T .

Definition 0.1. Let (X,T ) be a finite topological space
and U = {U1, . . . , Un} its minimal basis. The topogenous
matrix TX = [tij ] associated to X is the square matrix of
size n× n that satisfies:

tij =

{
1 , xi ∈ Uj

0 , in other case

Remark 0.2. (Shiraki, 1968) introduce the term topoge-
nous matrix to denote the transpose matrix of that in
above definition.

Example 0.3. In the next diagram, we represent the min-
imal basis for a topology on X = {x1, x2, x3, x4, x5, x6}.
The minimal open sets are U1 = U5 = {x1, x5} , U2 =
{x2, x4} , U3 = {x3} , U4 = {x4} , U6 = {x4, x6} and the
associated topogenous matrix is as follows:

•x1

•x2

•x3

•x4

•x5

•x6

TX =




1 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 1
1 0 0 0 1 0
0 0 0 0 0 1



.

Example 0.4. Consider the topological space (X,T )
where X = {a, b, c, d, e} and

T = {∅, {b} , {d} , {b, d} , {d, e} , {b, d, e} , {a, b, d},
{a, b, d, e} , {a, b, c, d} , X}

For the following orderings of the elements, we obtain the
respective topogenous matrices as can be verified by cal-
culating the minimal basis in each case:

(x1,x2, x3, x4, x5) = (a, b, c, d, e)

TX1
=




1 0 1 0 0
1 1 1 0 0
0 0 1 0 0
1 0 1 1 1
0 0 0 0 1




(x1,x2, x3, x4, x5) = (b, d, e, a, c)

TX2
=




1 0 0 1 1
0 1 1 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




Topogenous matrices can be characterized by the following
result.

Theorem 0.5. (Shiraki, 1968) Let T = [tij ] be the to-
pogenous matrix associated to (X,T ). Then T satisfies
the following properties, for all i, j, k ∈ In:

1. tij ∈ {0, 1}.
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{a, b, d, e} , {a, b, c, d} , X}

For the following orderings of the elements, we obtain the
respective topogenous matrices as can be verified by cal-
culating the minimal basis in each case:

(x1,x2, x3, x4, x5) = (a, b, c, d, e)

TX1
=




1 0 1 0 0
1 1 1 0 0
0 0 1 0 0
1 0 1 1 1
0 0 0 0 1




(x1,x2, x3, x4, x5) = (b, d, e, a, c)

TX2
=




1 0 0 1 1
0 1 1 1 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




Topogenous matrices can be characterized by the following
result.

Theorem 0.5. (Shiraki, 1968) Let T = [tij ] be the to-
pogenous matrix associated to (X,T ). Then T satisfies
the following properties, for all i, j, k ∈ In:

1. tij ∈ {0, 1}.

2. tii = 1.

3. tik = tkj = 1 =⇒ tij = 1.

Conversely, if a square matrix T = [tij ] of size n × n
satisfies the above properties, T induces a topology on X.

Homeomorphism classes are also described by similarity
via a permutation matrix between topogenous matrices.

Theorem 0.6. (Shiraki, 1968) Let (X,T ) and (Y,H )
be finite topological spaces with associated topogenous ma-
trices TX and TY , respectively. Then (X,T ) and (Y,H )
are homeomorphic spaces if, and only if, TX and TY are
similar via a permutation matrix.

Transiting Top(X)

Using topogenous matrices, we can find a way to transit
through Top(X), the complete lattice of all topologies on
a fixed set X. Given two topologies T1 and T2 in Top(X),
the supremum of them, denoted by 〈T1∪T2〉, is the topol-
ogy whose open sets are unions of finite intersections of
elements in the collection T1 ∪ T2.

Proposition 0.7. (Cuevas, 2016) Let (X,T1) and
(X,T2) be finite topological spaces with minimal basis
U = {U1, . . . , Un} and V = {V1, . . . , Vn}, respectively.
Then, the minimal basis W = {W1, . . . ,Wn} for the space
(X,T ∗), where T ∗ = 〈T1 ∪ T2〉, satisfies Wk = Uk ∩ Vk

for all k ∈ In.

The next theorem shows a way to move ahead in Top(X),
that is, it allows to find the supremum of two topologies.
The symbol ∧ is regarded in the following sense: if E and
F are n × n matrices, E ∧ F is the square matrix whose
entries satisfy [E ∧ F ]ij = min {[E]ij , [F ]ij}.

Theorem 0.8. Let X1 = (X,T1), X2 = (X,T2) and
X∗ = (X,T ∗) be finite topological spaces with topogenous
matrices TX1 , TX2 and TX∗ , respectively. If T ∗ = 〈T1 ∪
T2〉 then

TX∗ = TX1
∧ TX2

(1)

Conversely, if there exist finite spaces X1, X2 and X∗

which satisfy (1) then T ∗ = 〈T1 ∪ T2〉.

Proof. Suppose that T ∗ = 〈T1 ∪ T2〉 and fix an index
k ∈ In. By proposition 0.7, we know that Wk = Uk ∩ Vk,
thus xi ∈ Wk ⇐⇒ xi ∈ Uk and xi ∈ Vk. Since the column
k of a topogenous matrix represents the minimal open set

which contains xk, then for each i ∈ In it is satisfied that
[TX∗ ]ik = min {[TX1

]ik, [TX2
]ik}.

The second part of the theorem holds by uniqueness of
the minimal basis for a topology, since if (1) is satisfied,
by the above argument we would have TX∗ = TX1 ∧TX2 =
T(X,〈T1∪T2〉) and thus T ∗ = 〈T1 ∪ T2〉. �

A way to go back in Top(X) is finding subtopologies, which
is possible using topogenous matrices as is shown in the
next result.

Corollary 0.9. Let X1 = (X,T1) and X2 = (X,T2) be
finite topological spaces. Then T1 ⊆ T2 if, and only if,
[TX2 ]ij � [TX1 ]ij for all i, j ∈ In.

Proof. The result follows from the next chain of equiva-
lences:

T1 ⊆ T2 ⇐⇒ T2 = 〈T1 ∪ T2〉
⇐⇒ TX2

= TX1
∧ TX2

⇐⇒ [TX2
]ij � [TX1

]ij

�

Triangularization of topogenous matrices

Let (X,T ) be a finite topological space with minimal basis
U = {U1, . . . , Un} and associated topogenous matrix TX =
[tij ]. Define the binary relation � on X as follows:

xi � xj ⇐⇒ xi ∈ Uj ⇐⇒ Ui ⊆ Uj ⇐⇒ tij = 1 (2)

This relation is a preorder on the space, that is, it is reflex-
ive and transitive. The next theorem shows under which
condition such a relation is a partial order on X.

Theorem 0.10. (Alexandroff, 1937) Topologies on a fi-
nite set X are in one-to-one correspondence with preorders
on X. Moreover, a finite topological space (X,T ) is T0 if,
and only if, (X,�) is a poset.

Example 0.11. Consider the space (X,T ) given in the
example 0.4 with the ordering

(x1, x2, x3, x4, x5) = (a, b, c, d, e).

Such space satisfies the T0 axiom. Hasse diagram of the
poset (X,�) is the next:

2. tii = 1.

3. tik = tkj = 1 =⇒ tij = 1.

Conversely, if a square matrix T = [tij ] of size n × n
satisfies the above properties, T induces a topology on X.
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Theorem 0.6. (Shiraki, 1968) Let (X,T ) and (Y,H )
be finite topological spaces with associated topogenous ma-
trices TX and TY , respectively. Then (X,T ) and (Y,H )
are homeomorphic spaces if, and only if, TX and TY are
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T2〉 then
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which satisfy (1) then T ∗ = 〈T1 ∪ T2〉.

Proof. Suppose that T ∗ = 〈T1 ∪ T2〉 and fix an index
k ∈ In. By proposition 0.7, we know that Wk = Uk ∩ Vk,
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k of a topogenous matrix represents the minimal open set

which contains xk, then for each i ∈ In it is satisfied that
[TX∗ ]ik = min {[TX1

]ik, [TX2
]ik}.

The second part of the theorem holds by uniqueness of
the minimal basis for a topology, since if (1) is satisfied,
by the above argument we would have TX∗ = TX1 ∧TX2 =
T(X,〈T1∪T2〉) and thus T ∗ = 〈T1 ∪ T2〉. �

A way to go back in Top(X) is finding subtopologies, which
is possible using topogenous matrices as is shown in the
next result.

Corollary 0.9. Let X1 = (X,T1) and X2 = (X,T2) be
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[TX2 ]ij � [TX1 ]ij for all i, j ∈ In.

Proof. The result follows from the next chain of equiva-
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[tij ]. Define the binary relation � on X as follows:
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This relation is a preorder on the space, that is, it is reflex-
ive and transitive. The next theorem shows under which
condition such a relation is a partial order on X.

Theorem 0.10. (Alexandroff, 1937) Topologies on a fi-
nite set X are in one-to-one correspondence with preorders
on X. Moreover, a finite topological space (X,T ) is T0 if,
and only if, (X,�) is a poset.

Example 0.11. Consider the space (X,T ) given in the
example 0.4 with the ordering
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Such space satisfies the T0 axiom. Hasse diagram of the
poset (X,�) is the next:
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2. tii = 1.

3. tik = tkj = 1 =⇒ tij = 1.

Conversely, if a square matrix T = [tij ] of size n × n
satisfies the above properties, T induces a topology on X.

Homeomorphism classes are also described by similarity
via a permutation matrix between topogenous matrices.

Theorem 0.6. (Shiraki, 1968) Let (X,T ) and (Y,H )
be finite topological spaces with associated topogenous ma-
trices TX and TY , respectively. Then (X,T ) and (Y,H )
are homeomorphic spaces if, and only if, TX and TY are
similar via a permutation matrix.

Transiting Top(X)

Using topogenous matrices, we can find a way to transit
through Top(X), the complete lattice of all topologies on
a fixed set X. Given two topologies T1 and T2 in Top(X),
the supremum of them, denoted by 〈T1∪T2〉, is the topol-
ogy whose open sets are unions of finite intersections of
elements in the collection T1 ∪ T2.

Proposition 0.7. (Cuevas, 2016) Let (X,T1) and
(X,T2) be finite topological spaces with minimal basis
U = {U1, . . . , Un} and V = {V1, . . . , Vn}, respectively.
Then, the minimal basis W = {W1, . . . ,Wn} for the space
(X,T ∗), where T ∗ = 〈T1 ∪ T2〉, satisfies Wk = Uk ∩ Vk

for all k ∈ In.

The next theorem shows a way to move ahead in Top(X),
that is, it allows to find the supremum of two topologies.
The symbol ∧ is regarded in the following sense: if E and
F are n × n matrices, E ∧ F is the square matrix whose
entries satisfy [E ∧ F ]ij = min {[E]ij , [F ]ij}.

Theorem 0.8. Let X1 = (X,T1), X2 = (X,T2) and
X∗ = (X,T ∗) be finite topological spaces with topogenous
matrices TX1 , TX2 and TX∗ , respectively. If T ∗ = 〈T1 ∪
T2〉 then

TX∗ = TX1
∧ TX2

(1)

Conversely, if there exist finite spaces X1, X2 and X∗

which satisfy (1) then T ∗ = 〈T1 ∪ T2〉.

Proof. Suppose that T ∗ = 〈T1 ∪ T2〉 and fix an index
k ∈ In. By proposition 0.7, we know that Wk = Uk ∩ Vk,
thus xi ∈ Wk ⇐⇒ xi ∈ Uk and xi ∈ Vk. Since the column
k of a topogenous matrix represents the minimal open set

which contains xk, then for each i ∈ In it is satisfied that
[TX∗ ]ik = min {[TX1

]ik, [TX2
]ik}.

The second part of the theorem holds by uniqueness of
the minimal basis for a topology, since if (1) is satisfied,
by the above argument we would have TX∗ = TX1 ∧TX2 =
T(X,〈T1∪T2〉) and thus T ∗ = 〈T1 ∪ T2〉. �

A way to go back in Top(X) is finding subtopologies, which
is possible using topogenous matrices as is shown in the
next result.

Corollary 0.9. Let X1 = (X,T1) and X2 = (X,T2) be
finite topological spaces. Then T1 ⊆ T2 if, and only if,
[TX2 ]ij � [TX1 ]ij for all i, j ∈ In.

Proof. The result follows from the next chain of equiva-
lences:

T1 ⊆ T2 ⇐⇒ T2 = 〈T1 ∪ T2〉
⇐⇒ TX2

= TX1
∧ TX2

⇐⇒ [TX2
]ij � [TX1

]ij
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Let (X,T ) be a finite topological space with minimal basis
U = {U1, . . . , Un} and associated topogenous matrix TX =
[tij ]. Define the binary relation � on X as follows:

xi � xj ⇐⇒ xi ∈ Uj ⇐⇒ Ui ⊆ Uj ⇐⇒ tij = 1 (2)

This relation is a preorder on the space, that is, it is reflex-
ive and transitive. The next theorem shows under which
condition such a relation is a partial order on X.

Theorem 0.10. (Alexandroff, 1937) Topologies on a fi-
nite set X are in one-to-one correspondence with preorders
on X. Moreover, a finite topological space (X,T ) is T0 if,
and only if, (X,�) is a poset.

Example 0.11. Consider the space (X,T ) given in the
example 0.4 with the ordering

(x1, x2, x3, x4, x5) = (a, b, c, d, e).

Such space satisfies the T0 axiom. Hasse diagram of the
poset (X,�) is the next:

2. tii = 1.

3. tik = tkj = 1 =⇒ tij = 1.

Conversely, if a square matrix T = [tij ] of size n × n
satisfies the above properties, T induces a topology on X.

Homeomorphism classes are also described by similarity
via a permutation matrix between topogenous matrices.

Theorem 0.6. (Shiraki, 1968) Let (X,T ) and (Y,H )
be finite topological spaces with associated topogenous ma-
trices TX and TY , respectively. Then (X,T ) and (Y,H )
are homeomorphic spaces if, and only if, TX and TY are
similar via a permutation matrix.

Transiting Top(X)

Using topogenous matrices, we can find a way to transit
through Top(X), the complete lattice of all topologies on
a fixed set X. Given two topologies T1 and T2 in Top(X),
the supremum of them, denoted by 〈T1∪T2〉, is the topol-
ogy whose open sets are unions of finite intersections of
elements in the collection T1 ∪ T2.

Proposition 0.7. (Cuevas, 2016) Let (X,T1) and
(X,T2) be finite topological spaces with minimal basis
U = {U1, . . . , Un} and V = {V1, . . . , Vn}, respectively.
Then, the minimal basis W = {W1, . . . ,Wn} for the space
(X,T ∗), where T ∗ = 〈T1 ∪ T2〉, satisfies Wk = Uk ∩ Vk

for all k ∈ In.

The next theorem shows a way to move ahead in Top(X),
that is, it allows to find the supremum of two topologies.
The symbol ∧ is regarded in the following sense: if E and
F are n × n matrices, E ∧ F is the square matrix whose
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T2〉 then
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Conversely, if there exist finite spaces X1, X2 and X∗

which satisfy (1) then T ∗ = 〈T1 ∪ T2〉.

Proof. Suppose that T ∗ = 〈T1 ∪ T2〉 and fix an index
k ∈ In. By proposition 0.7, we know that Wk = Uk ∩ Vk,
thus xi ∈ Wk ⇐⇒ xi ∈ Uk and xi ∈ Vk. Since the column
k of a topogenous matrix represents the minimal open set

which contains xk, then for each i ∈ In it is satisfied that
[TX∗ ]ik = min {[TX1

]ik, [TX2
]ik}.

The second part of the theorem holds by uniqueness of
the minimal basis for a topology, since if (1) is satisfied,
by the above argument we would have TX∗ = TX1 ∧TX2 =
T(X,〈T1∪T2〉) and thus T ∗ = 〈T1 ∪ T2〉. �

A way to go back in Top(X) is finding subtopologies, which
is possible using topogenous matrices as is shown in the
next result.
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This relation is a preorder on the space, that is, it is reflex-
ive and transitive. The next theorem shows under which
condition such a relation is a partial order on X.

Theorem 0.10. (Alexandroff, 1937) Topologies on a fi-
nite set X are in one-to-one correspondence with preorders
on X. Moreover, a finite topological space (X,T ) is T0 if,
and only if, (X,�) is a poset.

Example 0.11. Consider the space (X,T ) given in the
example 0.4 with the ordering

(x1, x2, x3, x4, x5) = (a, b, c, d, e).

Such space satisfies the T0 axiom. Hasse diagram of the
poset (X,�) is the next:

2. tii = 1.

3. tik = tkj = 1 =⇒ tij = 1.

Conversely, if a square matrix T = [tij ] of size n × n
satisfies the above properties, T induces a topology on X.
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Theorem 0.6. (Shiraki, 1968) Let (X,T ) and (Y,H )
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trices TX and TY , respectively. Then (X,T ) and (Y,H )
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the minimal basis for a topology, since if (1) is satisfied,
by the above argument we would have TX∗ = TX1 ∧TX2 =
T(X,〈T1∪T2〉) and thus T ∗ = 〈T1 ∪ T2〉. �

A way to go back in Top(X) is finding subtopologies, which
is possible using topogenous matrices as is shown in the
next result.

Corollary 0.9. Let X1 = (X,T1) and X2 = (X,T2) be
finite topological spaces. Then T1 ⊆ T2 if, and only if,
[TX2 ]ij � [TX1 ]ij for all i, j ∈ In.

Proof. The result follows from the next chain of equiva-
lences:

T1 ⊆ T2 ⇐⇒ T2 = 〈T1 ∪ T2〉
⇐⇒ TX2

= TX1
∧ TX2

⇐⇒ [TX2
]ij � [TX1

]ij

�

Triangularization of topogenous matrices

Let (X,T ) be a finite topological space with minimal basis
U = {U1, . . . , Un} and associated topogenous matrix TX =
[tij ]. Define the binary relation � on X as follows:

xi � xj ⇐⇒ xi ∈ Uj ⇐⇒ Ui ⊆ Uj ⇐⇒ tij = 1 (2)

This relation is a preorder on the space, that is, it is reflex-
ive and transitive. The next theorem shows under which
condition such a relation is a partial order on X.

Theorem 0.10. (Alexandroff, 1937) Topologies on a fi-
nite set X are in one-to-one correspondence with preorders
on X. Moreover, a finite topological space (X,T ) is T0 if,
and only if, (X,�) is a poset.

Example 0.11. Consider the space (X,T ) given in the
example 0.4 with the ordering

(x1, x2, x3, x4, x5) = (a, b, c, d, e).

Such space satisfies the T0 axiom. Hasse diagram of the
poset (X,�) is the next:

U1 = {x1, x2, x4}
U2 = {x2}
U3 = {x1, x2, x3, x4}
U4 = {x4}
U5 = {x4, x5}

•x1

•x2

•x3

•x4

•x5

In the example 0.4, it was possible to associate an upper
triangular topogenous matrix to the considered space since
such topological space is T0, as shows the next Shiraki’s
theorem.

Theorem 0.12. (Shiraki, 1968) A finite topological
space (X,T ) is T0 if, and only if, its associated topoge-
nous matrix TX is similar via a permutation matrix to an
upper triangular topogenous matrix.

A procedure to triangularize a topogenous matrix of a T0

space X is described below. Given a topogenous matrix

TX = [tij ] define Mk =
n∑

i=1

tik = |Uk|, for each k ∈ In; if

we organize them in ascending order

Mk1
� Mk2

� · · · � Mkn
(3)

and consider the permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
,

the topogenous matrix PT
σ TXPσ is upper triangular: if

i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.

Example 0.13. Consider the topological space X, repre-
sented by the next Hasse diagram and topogenous matrix:

•x1

•x2

•x3

•x4

•x5

•x6

TX =




1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1




First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5

)
= (165)

whose associated matrix is given by

Pσ =




0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0



.

If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:
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•x̂4

•x̂6

•x̂1
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theorem.
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i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.
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

1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
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
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First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5
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= (165)

whose associated matrix is given by

Pσ =
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0 1 0 0 0 0
0 0 1 0 0 0
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If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:

•x̂5
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U3 = {x1, x2, x3, x4}
U4 = {x4}
U5 = {x4, x5}

•x1

•x2

•x3

•x4

•x5

In the example 0.4, it was possible to associate an upper
triangular topogenous matrix to the considered space since
such topological space is T0, as shows the next Shiraki’s
theorem.

Theorem 0.12. (Shiraki, 1968) A finite topological
space (X,T ) is T0 if, and only if, its associated topoge-
nous matrix TX is similar via a permutation matrix to an
upper triangular topogenous matrix.

A procedure to triangularize a topogenous matrix of a T0

space X is described below. Given a topogenous matrix

TX = [tij ] define Mk =
n∑

i=1

tik = |Uk|, for each k ∈ In; if

we organize them in ascending order

Mk1
� Mk2

� · · · � Mkn
(3)

and consider the permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
,

the topogenous matrix PT
σ TXPσ is upper triangular: if

i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.

Example 0.13. Consider the topological space X, repre-
sented by the next Hasse diagram and topogenous matrix:

•x1

•x2

•x3

•x4

•x5

•x6

TX =


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1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1




First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5

)
= (165)

whose associated matrix is given by

Pσ =


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0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
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1 0 0 0 0 0


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If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:

•x̂5

•x̂2

•x̂3

•x̂4

•x̂6
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U1 = {x1, x2, x4}
U2 = {x2}
U3 = {x1, x2, x3, x4}
U4 = {x4}
U5 = {x4, x5}

•x1

•x2

•x3

•x4

•x5

In the example 0.4, it was possible to associate an upper
triangular topogenous matrix to the considered space since
such topological space is T0, as shows the next Shiraki’s
theorem.

Theorem 0.12. (Shiraki, 1968) A finite topological
space (X,T ) is T0 if, and only if, its associated topoge-
nous matrix TX is similar via a permutation matrix to an
upper triangular topogenous matrix.

A procedure to triangularize a topogenous matrix of a T0

space X is described below. Given a topogenous matrix

TX = [tij ] define Mk =
n∑

i=1

tik = |Uk|, for each k ∈ In; if

we organize them in ascending order

Mk1
� Mk2

� · · · � Mkn
(3)

and consider the permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
,

the topogenous matrix PT
σ TXPσ is upper triangular: if

i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.

Example 0.13. Consider the topological space X, repre-
sented by the next Hasse diagram and topogenous matrix:

•x1

•x2

•x3

•x4

•x5

•x6

TX =




1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1




First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5

)
= (165)

whose associated matrix is given by

Pσ =




0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0



.

If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:

•x̂5

•x̂2

•x̂3

•x̂4

•x̂6

•x̂1

PT
σ TXPσ =




1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Remark 0.14. Observe that, in general, the permutation
σ constructed using the relations in (3) is not unique. In
example 0.13, we could have used σ′ = (165)(23) (and,
in this case, no other!) to triangularize TX obtaining the
upper triangular matrix:

PT
σ′TXPσ′ =




1 1 1 1 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Despite of this lack of uniqueness to choose such permuta-
tion σ, the resulting T0 spaces are always homeomorphic
(Theorem 0.6), so the topological properties are the same.

Remark 0.15. From now on, when (X,T ) is a T0 space,
we assume a fixed ordering in the elements of X such that
its topogenous matrix TX is upper triangular.

Stong matrix

Definition 0.16. GivenX a T0 space, we define the Stong
matrix SX = [sij ] as the square matrix of size n× n that
satisfies

sij =

{
1 , xi � xj and there is no k with xi < xk < xj

0 , in other case.

A simple method to calculate the topogenous matrix TX

and the Stong matrix SX of the space X, from the as-
sociated Hasse diagram, is described below. Number the
vertices so that xi < xj =⇒ i < j, that is, number them
from bottom to top ensuring that the topogenous matrix
is upper triangular. For each i �= j:

• tij = 1 if, and only if, there exists a chain whose
minimum is xi and maximum is xj .

• sij = 1 if, and only if, (xi, xj) is an edge of the dia-
gram.

Remark 0.17. tij = 0 ⇒ sij = 0 and sij = 1 ⇒ tij = 1.

Example 0.18. Consider the Hasse diagram (left) num-
bering its vertices as described before (right):

• •

• • •

•

• •

•x1 •x2

•x3 •x4 •x5

•x6

•x7 •x8

For example, for x5 we have x5 � x5, x5 � x6, x5 � x7 and
x5 � x8 then the fifth row of TX is [0 0 0 0 1 1 1 1]. Also,
the edges with initial point x1 are (x1, x3) and (x1, x4),
then the first row of SX is [1 0 1 1 0 0 0 0]. The associated
matrices are the following:

TX =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




SX =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Relation between topogenous and Stong
matrices

We can reconstruct the topogenous matrix from the Stong
matrix and vice versa. In the first case, using theorem 0.5,
we see that the topogenous matrix is the incidence matrix
of the transitive closure of the binary relation represented

U1 = {x1, x2, x4}
U2 = {x2}
U3 = {x1, x2, x3, x4}
U4 = {x4}
U5 = {x4, x5}

•x1

•x2

•x3

•x4

•x5

In the example 0.4, it was possible to associate an upper
triangular topogenous matrix to the considered space since
such topological space is T0, as shows the next Shiraki’s
theorem.

Theorem 0.12. (Shiraki, 1968) A finite topological
space (X,T ) is T0 if, and only if, its associated topoge-
nous matrix TX is similar via a permutation matrix to an
upper triangular topogenous matrix.

A procedure to triangularize a topogenous matrix of a T0

space X is described below. Given a topogenous matrix

TX = [tij ] define Mk =
n∑

i=1

tik = |Uk|, for each k ∈ In; if

we organize them in ascending order

Mk1
� Mk2

� · · · � Mkn
(3)

and consider the permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
,

the topogenous matrix PT
σ TXPσ is upper triangular: if

i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.

Example 0.13. Consider the topological space X, repre-
sented by the next Hasse diagram and topogenous matrix:

•x1

•x2

•x3

•x4

•x5

•x6

TX =




1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1




First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5

)
= (165)

whose associated matrix is given by

Pσ =




0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0



.

If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:

•x̂5

•x̂2

•x̂3

•x̂4

•x̂6

•x̂1

PT
σ TXPσ =




1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Remark 0.14. Observe that, in general, the permutation
σ constructed using the relations in (3) is not unique. In
example 0.13, we could have used σ′ = (165)(23) (and,
in this case, no other!) to triangularize TX obtaining the
upper triangular matrix:

PT
σ′TXPσ′ =




1 1 1 1 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Despite of this lack of uniqueness to choose such permuta-
tion σ, the resulting T0 spaces are always homeomorphic
(Theorem 0.6), so the topological properties are the same.

Remark 0.15. From now on, when (X,T ) is a T0 space,
we assume a fixed ordering in the elements of X such that
its topogenous matrix TX is upper triangular.

Stong matrix

Definition 0.16. GivenX a T0 space, we define the Stong
matrix SX = [sij ] as the square matrix of size n× n that
satisfies

sij =

{
1 , xi � xj and there is no k with xi < xk < xj

0 , in other case.

A simple method to calculate the topogenous matrix TX

and the Stong matrix SX of the space X, from the as-
sociated Hasse diagram, is described below. Number the
vertices so that xi < xj =⇒ i < j, that is, number them
from bottom to top ensuring that the topogenous matrix
is upper triangular. For each i �= j:

• tij = 1 if, and only if, there exists a chain whose
minimum is xi and maximum is xj .

• sij = 1 if, and only if, (xi, xj) is an edge of the dia-
gram.

Remark 0.17. tij = 0 ⇒ sij = 0 and sij = 1 ⇒ tij = 1.

Example 0.18. Consider the Hasse diagram (left) num-
bering its vertices as described before (right):

• •

• • •

•

• •

•x1 •x2

•x3 •x4 •x5

•x6

•x7 •x8

For example, for x5 we have x5 � x5, x5 � x6, x5 � x7 and
x5 � x8 then the fifth row of TX is [0 0 0 0 1 1 1 1]. Also,
the edges with initial point x1 are (x1, x3) and (x1, x4),
then the first row of SX is [1 0 1 1 0 0 0 0]. The associated
matrices are the following:

TX =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
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0 0 0 0 0 0 0 1




SX =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Relation between topogenous and Stong
matrices

We can reconstruct the topogenous matrix from the Stong
matrix and vice versa. In the first case, using theorem 0.5,
we see that the topogenous matrix is the incidence matrix
of the transitive closure of the binary relation represented

PT
σ TXPσ =


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

.

Remark 0.14. Observe that, in general, the permutation
σ constructed using the relations in (3) is not unique. In
example 0.13, we could have used σ′ = (165)(23) (and,
in this case, no other!) to triangularize TX obtaining the
upper triangular matrix:

PT
σ′TXPσ′ =




1 1 1 1 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 0 0 1 1 1
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

.

Despite of this lack of uniqueness to choose such permuta-
tion σ, the resulting T0 spaces are always homeomorphic
(Theorem 0.6), so the topological properties are the same.

Remark 0.15. From now on, when (X,T ) is a T0 space,
we assume a fixed ordering in the elements of X such that
its topogenous matrix TX is upper triangular.

Stong matrix

Definition 0.16. GivenX a T0 space, we define the Stong
matrix SX = [sij ] as the square matrix of size n× n that
satisfies

sij =

{
1 , xi � xj and there is no k with xi < xk < xj

0 , in other case.

A simple method to calculate the topogenous matrix TX

and the Stong matrix SX of the space X, from the as-
sociated Hasse diagram, is described below. Number the
vertices so that xi < xj =⇒ i < j, that is, number them
from bottom to top ensuring that the topogenous matrix
is upper triangular. For each i �= j:

• tij = 1 if, and only if, there exists a chain whose
minimum is xi and maximum is xj .

• sij = 1 if, and only if, (xi, xj) is an edge of the dia-
gram.

Remark 0.17. tij = 0 ⇒ sij = 0 and sij = 1 ⇒ tij = 1.

Example 0.18. Consider the Hasse diagram (left) num-
bering its vertices as described before (right):

• •

• • •

•

• •

•x1 •x2

•x3 •x4 •x5

•x6

•x7 •x8

For example, for x5 we have x5 � x5, x5 � x6, x5 � x7 and
x5 � x8 then the fifth row of TX is [0 0 0 0 1 1 1 1]. Also,
the edges with initial point x1 are (x1, x3) and (x1, x4),
then the first row of SX is [1 0 1 1 0 0 0 0]. The associated
matrices are the following:

TX =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




SX =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Relation between topogenous and Stong
matrices

We can reconstruct the topogenous matrix from the Stong
matrix and vice versa. In the first case, using theorem 0.5,
we see that the topogenous matrix is the incidence matrix
of the transitive closure of the binary relation represented

U1 = {x1, x2, x4}
U2 = {x2}
U3 = {x1, x2, x3, x4}
U4 = {x4}
U5 = {x4, x5}

•x1

•x2

•x3

•x4

•x5

In the example 0.4, it was possible to associate an upper
triangular topogenous matrix to the considered space since
such topological space is T0, as shows the next Shiraki’s
theorem.

Theorem 0.12. (Shiraki, 1968) A finite topological
space (X,T ) is T0 if, and only if, its associated topoge-
nous matrix TX is similar via a permutation matrix to an
upper triangular topogenous matrix.

A procedure to triangularize a topogenous matrix of a T0

space X is described below. Given a topogenous matrix

TX = [tij ] define Mk =
n∑

i=1

tik = |Uk|, for each k ∈ In; if

we organize them in ascending order

Mk1
� Mk2

� · · · � Mkn
(3)

and consider the permutation σ =

(
1 2 · · · n
k1 k2 · · · kn

)
,

the topogenous matrix PT
σ TXPσ is upper triangular: if

i > j and tσ(i)σ(j) = 1, we would have xσ(i) < xσ(j) and
therefore Mki < Mkj which contradicts the ordering of
Mk, hence tσ(i)σ(j) = 0.

Example 0.13. Consider the topological space X, repre-
sented by the next Hasse diagram and topogenous matrix:

•x1

•x2

•x3

•x4

•x5

•x6

TX =




1 0 0 0 1 0
1 1 0 1 1 0
1 0 1 0 1 0
1 0 0 1 1 0
0 0 0 0 1 0
1 1 1 1 1 1




First, we find that: M1 = 5,M2 = M3 = 2,M4 = 3,M5 =
6 and M6 = 1. Therefore we obtain the permutation

σ =

(
1 2 3 4 5 6
6 2 3 4 1 5

)
= (165)

whose associated matrix is given by

Pσ =




0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0



.

If we denote by x̂k = xσ(k), the new ordering of the ele-
ments is represented in the topogenous matrix as follows:

•x̂5

•x̂2

•x̂3

•x̂4

•x̂6

•x̂1
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PT
σ TXPσ =




1 1 1 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Remark 0.14. Observe that, in general, the permutation
σ constructed using the relations in (3) is not unique. In
example 0.13, we could have used σ′ = (165)(23) (and,
in this case, no other!) to triangularize TX obtaining the
upper triangular matrix:

PT
σ′TXPσ′ =




1 1 1 1 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1



.

Despite of this lack of uniqueness to choose such permuta-
tion σ, the resulting T0 spaces are always homeomorphic
(Theorem 0.6), so the topological properties are the same.

Remark 0.15. From now on, when (X,T ) is a T0 space,
we assume a fixed ordering in the elements of X such that
its topogenous matrix TX is upper triangular.

Stong matrix

Definition 0.16. GivenX a T0 space, we define the Stong
matrix SX = [sij ] as the square matrix of size n× n that
satisfies

sij =

{
1 , xi � xj and there is no k with xi < xk < xj

0 , in other case.

A simple method to calculate the topogenous matrix TX

and the Stong matrix SX of the space X, from the as-
sociated Hasse diagram, is described below. Number the
vertices so that xi < xj =⇒ i < j, that is, number them
from bottom to top ensuring that the topogenous matrix
is upper triangular. For each i �= j:

• tij = 1 if, and only if, there exists a chain whose
minimum is xi and maximum is xj .

• sij = 1 if, and only if, (xi, xj) is an edge of the dia-
gram.

Remark 0.17. tij = 0 ⇒ sij = 0 and sij = 1 ⇒ tij = 1.

Example 0.18. Consider the Hasse diagram (left) num-
bering its vertices as described before (right):

• •

• • •

•

• •

•x1 •x2

•x3 •x4 •x5

•x6

•x7 •x8

For example, for x5 we have x5 � x5, x5 � x6, x5 � x7 and
x5 � x8 then the fifth row of TX is [0 0 0 0 1 1 1 1]. Also,
the edges with initial point x1 are (x1, x3) and (x1, x4),
then the first row of SX is [1 0 1 1 0 0 0 0]. The associated
matrices are the following:

TX =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




SX =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Relation between topogenous and Stong
matrices

We can reconstruct the topogenous matrix from the Stong
matrix and vice versa. In the first case, using theorem 0.5,
we see that the topogenous matrix is the incidence matrix
of the transitive closure of the binary relation represented

by the Stong matrix. For the matrix given in example 0.18

SX = [sij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




we add ones in each upper subdiagonal. The first subdi-
agonal, consisting of the elements sk,k+1, 1 � k � 7, is
not modified because if there is a k such that sk,k+1 = 0
and tk,k+1 = 1, there would exist xj with xk < xj < xk+1,
which is not possible since the ordering we have chosen in
remark 0.15 would imply k < j < k + 1, a contradiction.
For the second subdiagonal, whose elements are sk,k+2,
1 � k � 6, there are zeros in the entries s35 and s57. Since
s56 = s67 = 1 we have t56 = t67 = 1 =⇒ t57 = 1 (theorem
0.5) and thus we add a one in the entry (5,7). In the case
s35 = 0 there is no modification, because s34 = s45 = 0:

S
(2)
X = [s

(2)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




For the third subdiagonal, with elements sk,k+3, 1 � k �

5, we have zeros in the entries s
(2)
25 , s

(2)
36 , s

(2)
47 and s

(2)
58 . For

example, since s
(2)
46 = s

(2)
67 = 1 then t46 = t67 = 1 =⇒ t47 =

1, and hence we add a one in the entry (4, 7). Similarly

for the entry (5, 8) since s
(2)
56 = s

(2)
68 = 1. Entry (2, 5) is

not changed because there exists no k such that s
(2)
2k =

s
(2)
k5 = 1, and for the same reason we do not modify the
entry (3, 6):

S
(3)
X = [s

(3)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Proceeding similarly for the following subdiagonals, we

obtain the matrices S
(4)
X , S

(5)
X , S

(6)
X and S

(7)
X :

S
(4)
X =




1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(5)
X =




1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(6)
X =




1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(7)
X =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Since we reached the last upper subdiagonal, we obtain

the topogenous matrix TX = S
(7)
X , which coincides with

the matrix of example 0.18.

The above procedure can be applied to any finite T0 space
X by using the following algorithm.

Algorithm: Topogenous matrix from Stong matrix

Input: Stong matrix SX = [sij ]n×n associated to the T0

space X.

by the Stong matrix. For the matrix given in example 0.18

SX = [sij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




we add ones in each upper subdiagonal. The first subdi-
agonal, consisting of the elements sk,k+1, 1 � k � 7, is
not modified because if there is a k such that sk,k+1 = 0
and tk,k+1 = 1, there would exist xj with xk < xj < xk+1,
which is not possible since the ordering we have chosen in
remark 0.15 would imply k < j < k + 1, a contradiction.
For the second subdiagonal, whose elements are sk,k+2,
1 � k � 6, there are zeros in the entries s35 and s57. Since
s56 = s67 = 1 we have t56 = t67 = 1 =⇒ t57 = 1 (theorem
0.5) and thus we add a one in the entry (5,7). In the case
s35 = 0 there is no modification, because s34 = s45 = 0:

S
(2)
X = [s

(2)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




For the third subdiagonal, with elements sk,k+3, 1 � k �

5, we have zeros in the entries s
(2)
25 , s

(2)
36 , s

(2)
47 and s

(2)
58 . For

example, since s
(2)
46 = s

(2)
67 = 1 then t46 = t67 = 1 =⇒ t47 =

1, and hence we add a one in the entry (4, 7). Similarly

for the entry (5, 8) since s
(2)
56 = s

(2)
68 = 1. Entry (2, 5) is

not changed because there exists no k such that s
(2)
2k =

s
(2)
k5 = 1, and for the same reason we do not modify the
entry (3, 6):

S
(3)
X = [s

(3)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Proceeding similarly for the following subdiagonals, we

obtain the matrices S
(4)
X , S

(5)
X , S

(6)
X and S

(7)
X :

S
(4)
X =




1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(5)
X =




1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(6)
X =




1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(7)
X =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Since we reached the last upper subdiagonal, we obtain

the topogenous matrix TX = S
(7)
X , which coincides with

the matrix of example 0.18.

The above procedure can be applied to any finite T0 space
X by using the following algorithm.

Algorithm: Topogenous matrix from Stong matrix

Input: Stong matrix SX = [sij ]n×n associated to the T0

space X.

by the Stong matrix. For the matrix given in example 0.18

SX = [sij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




we add ones in each upper subdiagonal. The first subdi-
agonal, consisting of the elements sk,k+1, 1 � k � 7, is
not modified because if there is a k such that sk,k+1 = 0
and tk,k+1 = 1, there would exist xj with xk < xj < xk+1,
which is not possible since the ordering we have chosen in
remark 0.15 would imply k < j < k + 1, a contradiction.
For the second subdiagonal, whose elements are sk,k+2,
1 � k � 6, there are zeros in the entries s35 and s57. Since
s56 = s67 = 1 we have t56 = t67 = 1 =⇒ t57 = 1 (theorem
0.5) and thus we add a one in the entry (5,7). In the case
s35 = 0 there is no modification, because s34 = s45 = 0:

S
(2)
X = [s

(2)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




For the third subdiagonal, with elements sk,k+3, 1 � k �

5, we have zeros in the entries s
(2)
25 , s

(2)
36 , s

(2)
47 and s

(2)
58 . For

example, since s
(2)
46 = s

(2)
67 = 1 then t46 = t67 = 1 =⇒ t47 =

1, and hence we add a one in the entry (4, 7). Similarly

for the entry (5, 8) since s
(2)
56 = s

(2)
68 = 1. Entry (2, 5) is

not changed because there exists no k such that s
(2)
2k =

s
(2)
k5 = 1, and for the same reason we do not modify the
entry (3, 6):

S
(3)
X = [s

(3)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Proceeding similarly for the following subdiagonals, we

obtain the matrices S
(4)
X , S

(5)
X , S

(6)
X and S

(7)
X :

S
(4)
X =




1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(5)
X =




1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(6)
X =




1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(7)
X =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Since we reached the last upper subdiagonal, we obtain

the topogenous matrix TX = S
(7)
X , which coincides with

the matrix of example 0.18.

The above procedure can be applied to any finite T0 space
X by using the following algorithm.

Algorithm: Topogenous matrix from Stong matrix

Input: Stong matrix SX = [sij ]n×n associated to the T0

space X.

by the Stong matrix. For the matrix given in example 0.18

SX = [sij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




we add ones in each upper subdiagonal. The first subdi-
agonal, consisting of the elements sk,k+1, 1 � k � 7, is
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S
(2)
X = [s

(2)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




For the third subdiagonal, with elements sk,k+3, 1 � k �

5, we have zeros in the entries s
(2)
25 , s

(2)
36 , s

(2)
47 and s

(2)
58 . For

example, since s
(2)
46 = s

(2)
67 = 1 then t46 = t67 = 1 =⇒ t47 =

1, and hence we add a one in the entry (4, 7). Similarly

for the entry (5, 8) since s
(2)
56 = s

(2)
68 = 1. Entry (2, 5) is

not changed because there exists no k such that s
(2)
2k =

s
(2)
k5 = 1, and for the same reason we do not modify the
entry (3, 6):

S
(3)
X = [s

(3)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
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


Proceeding similarly for the following subdiagonals, we

obtain the matrices S
(4)
X , S

(5)
X , S

(6)
X and S

(7)
X :

S
(4)
X =




1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(5)
X =




1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(6)
X =




1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(7)
X =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Since we reached the last upper subdiagonal, we obtain

the topogenous matrix TX = S
(7)
X , which coincides with

the matrix of example 0.18.

The above procedure can be applied to any finite T0 space
X by using the following algorithm.

Algorithm: Topogenous matrix from Stong matrix

Input: Stong matrix SX = [sij ]n×n associated to the T0

space X.
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Output: Topogenous matrix TX = [tij ]n×n associated to
the T0 space X.

1. if n = 1, 2 do T = S, else

2. if j � i+ 1 or sij = 1 do tij = sij , else

3. for j = 3 · · ·n

4. for each zero element si,i+j−1 in the j-th
upper subdiagonal

5. if there exists r such that sir = 1 =
sr,i+j−1 do ti,i+j−1 = 1

else ti,i+j−1 = 0.

6. end for

7. end for

Reversing the above process, we obtain an algorithm to
find the Stong matrix knowing the topogenous matrix of
the space.

Algorithm: Stong matrix from topogenous matrix

Input: Topogenous matrix TX = [tij ]n×n associated to
the T0 space X.

Output: Stong matrix SX = [sij ]n×n associated to the
T0 space X.

1. for i = 1 · · ·n

2. for j = 1 · · ·n

3. if j � i+ 1 or tij = 0 do sij = tij , else

4. if there exists k, between i+1 and j − 1, such
that tik = 1 = tkj

do sij = 0, else sij = 1

5. end for

6. end for

Calculating submodular functions
values

The entropy function and f

The entropy function rA defined on an arbitrary FD-
relation is studied in (Sarria et al., 2014), in an attempt
to apply the information theory in different structures.
For each N FD-relation, there exists an special set A
such that rA ∈ λ(N ), which in our particular case of
topological FD-relations, allows to find a polymatroid
that characterizes the topological properties of the space,
as is shown in (Sarria et al., 2014). Here λ(N ) is the
set of submodular and non-decreasing functions such that
Nf = N . We intend in this subsection to propose an
algorithm to find the values of such entropy function in
any subset.

We know that E = {xi1 , . . . , xir} ⊆ X is a closed set if,
and only if, it coincides with its closure which means that
every adherent point of E is in E. Using the minimal
basis U = {Ux}x∈X of the space X, we have the following
characterization:

E is a closed set of X ⇐⇒ Ux ∩ E = ∅ for all x /∈ E (4)

Bearing in mind that each column k of the topogenous
matrix represents the minimal open set Uk, we shall find
one by one the adherent points of E, not in E, finding
the smallest closed set C which contains it, using the
characterization given in (4), by the following procedure:
we take C(1) := E = {xi1 , . . . , xir}; for each xk such
that k /∈ {i1, . . . , ir}, we consider the k-th column of
the topogenous matrix and check the elements in rows
i1, . . . , ir in such column; if they are all zero, we take
C = C(1), otherwise, there would exist j1 such that xj1 is
an adherent point of E hence we take C(2) = E ∪ {xj1}.
Now, for each xk such that k /∈ {i1, . . . , ir, j1}, we consider
the k-th column of the topogenous matrix and check the
elements in rows i1, . . . , ir, j1 in such column; if they are
all zero, we take C = C(2), otherwise, there would exist
j2 such that xj2 is an adherent point of E, hence we take
C(3) = E ∪ {xj1 , xj2}.

Output: Topogenous matrix TX = [tij ]n×n associated to
the T0 space X.

1. if n = 1, 2 do T = S, else

2. if j � i+ 1 or sij = 1 do tij = sij , else

3. for j = 3 · · ·n

4. for each zero element si,i+j−1 in the j-th
upper subdiagonal

5. if there exists r such that sir = 1 =
sr,i+j−1 do ti,i+j−1 = 1

else ti,i+j−1 = 0.

6. end for
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the T0 space X.

1. if n = 1, 2 do T = S, else

2. if j � i+ 1 or sij = 1 do tij = sij , else

3. for j = 3 · · ·n

4. for each zero element si,i+j−1 in the j-th
upper subdiagonal

5. if there exists r such that sir = 1 =
sr,i+j−1 do ti,i+j−1 = 1
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6. end for
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Reversing the above process, we obtain an algorithm to
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For each N FD-relation, there exists an special set A
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as is shown in (Sarria et al., 2014). Here λ(N ) is the
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and only if, it coincides with its closure which means that
every adherent point of E is in E. Using the minimal
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by the Stong matrix. For the matrix given in example 0.18

SX = [sij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




we add ones in each upper subdiagonal. The first subdi-
agonal, consisting of the elements sk,k+1, 1 � k � 7, is
not modified because if there is a k such that sk,k+1 = 0
and tk,k+1 = 1, there would exist xj with xk < xj < xk+1,
which is not possible since the ordering we have chosen in
remark 0.15 would imply k < j < k + 1, a contradiction.
For the second subdiagonal, whose elements are sk,k+2,
1 � k � 6, there are zeros in the entries s35 and s57. Since
s56 = s67 = 1 we have t56 = t67 = 1 =⇒ t57 = 1 (theorem
0.5) and thus we add a one in the entry (5,7). In the case
s35 = 0 there is no modification, because s34 = s45 = 0:

S
(2)
X = [s

(2)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




For the third subdiagonal, with elements sk,k+3, 1 � k �

5, we have zeros in the entries s
(2)
25 , s

(2)
36 , s

(2)
47 and s

(2)
58 . For

example, since s
(2)
46 = s

(2)
67 = 1 then t46 = t67 = 1 =⇒ t47 =

1, and hence we add a one in the entry (4, 7). Similarly

for the entry (5, 8) since s
(2)
56 = s

(2)
68 = 1. Entry (2, 5) is

not changed because there exists no k such that s
(2)
2k =

s
(2)
k5 = 1, and for the same reason we do not modify the
entry (3, 6):

S
(3)
X = [s

(3)
ij ] =




1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Proceeding similarly for the following subdiagonals, we

obtain the matrices S
(4)
X , S

(5)
X , S

(6)
X and S

(7)
X :

S
(4)
X =




1 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(5)
X =




1 0 1 1 0 1 0 0
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(6)
X =




1 0 1 1 0 1 1 0
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




S
(7)
X =




1 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




Since we reached the last upper subdiagonal, we obtain

the topogenous matrix TX = S
(7)
X , which coincides with

the matrix of example 0.18.

The above procedure can be applied to any finite T0 space
X by using the following algorithm.

Algorithm: Topogenous matrix from Stong matrix

Input: Stong matrix SX = [sij ]n×n associated to the T0

space X.

Output: Topogenous matrix TX = [tij ]n×n associated to
the T0 space X.

1. if n = 1, 2 do T = S, else

2. if j � i+ 1 or sij = 1 do tij = sij , else

3. for j = 3 · · ·n

4. for each zero element si,i+j−1 in the j-th
upper subdiagonal

5. if there exists r such that sir = 1 =
sr,i+j−1 do ti,i+j−1 = 1

else ti,i+j−1 = 0.

6. end for

7. end for

Reversing the above process, we obtain an algorithm to
find the Stong matrix knowing the topogenous matrix of
the space.

Algorithm: Stong matrix from topogenous matrix

Input: Topogenous matrix TX = [tij ]n×n associated to
the T0 space X.

Output: Stong matrix SX = [sij ]n×n associated to the
T0 space X.

1. for i = 1 · · ·n

2. for j = 1 · · ·n

3. if j � i+ 1 or tij = 0 do sij = tij , else

4. if there exists k, between i+1 and j − 1, such
that tik = 1 = tkj

do sij = 0, else sij = 1

5. end for

6. end for

Calculating submodular functions
values

The entropy function and f

The entropy function rA defined on an arbitrary FD-
relation is studied in (Sarria et al., 2014), in an attempt
to apply the information theory in different structures.
For each N FD-relation, there exists an special set A
such that rA ∈ λ(N ), which in our particular case of
topological FD-relations, allows to find a polymatroid
that characterizes the topological properties of the space,
as is shown in (Sarria et al., 2014). Here λ(N ) is the
set of submodular and non-decreasing functions such that
Nf = N . We intend in this subsection to propose an
algorithm to find the values of such entropy function in
any subset.

We know that E = {xi1 , . . . , xir} ⊆ X is a closed set if,
and only if, it coincides with its closure which means that
every adherent point of E is in E. Using the minimal
basis U = {Ux}x∈X of the space X, we have the following
characterization:

E is a closed set of X ⇐⇒ Ux ∩ E = ∅ for all x /∈ E (4)

Bearing in mind that each column k of the topogenous
matrix represents the minimal open set Uk, we shall find
one by one the adherent points of E, not in E, finding
the smallest closed set C which contains it, using the
characterization given in (4), by the following procedure:
we take C(1) := E = {xi1 , . . . , xir}; for each xk such
that k /∈ {i1, . . . , ir}, we consider the k-th column of
the topogenous matrix and check the elements in rows
i1, . . . , ir in such column; if they are all zero, we take
C = C(1), otherwise, there would exist j1 such that xj1 is
an adherent point of E hence we take C(2) = E ∪ {xj1}.
Now, for each xk such that k /∈ {i1, . . . , ir, j1}, we consider
the k-th column of the topogenous matrix and check the
elements in rows i1, . . . , ir, j1 in such column; if they are
all zero, we take C = C(2), otherwise, there would exist
j2 such that xj2 is an adherent point of E, hence we take
C(3) = E ∪ {xj1 , xj2}.
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Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

Proceeding recursively, we continue adding points to ob-
tain a set C(m) = E ∪

{
xj1 , xj2 , . . . , xjm−1

}
such that

C(m) = X, in which case the set E is dense in X, or
C(m) is such that for all k /∈ {i1, . . . , ir, j1, . . . , jm−1}, the
k-th column has zeros in entries i1, . . . , ir, j1, . . . , jm−1, in
which case C = C(m).

Example 0.19. We shall find the closure of {x2, x4} in
the topological space X whose topogenous matrix is the
following:

TX =




1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.

Initially, we take C(1) = {x2, x4}. Since the first column
has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence
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

1 0 1 0 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



.
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has zeros in rows 2 and 4, the element x1 is not added
to C(1); the third column has a one in the second row
and so we make C(2) = {x2, x3, x4}. Every time we add a
point, we must look again at those elements that we had
discarded in the previous step, in this case x1. The first
column has zeros in rows 2, 3 and 4, then x1 is not added
to C(2); finally the fifth column has zeros in 2, 3 and 4,
so x5 is not added to C(2), and as we have exhausted all
points of space, we conclude that the closure of {x2, x4}
is C = C(2) = {x2, x3, x4}.

The above comments help find the closure of an arbitrary
subset using the following algorithm.

Algorithm: Closure of a subset I ⊆ X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Closure of I: c(I) = C.

1. Define C = I and r = 1.

2. while r = 1

3. for xi /∈ C

4. if
∑

xk∈C tik �= 0 do C ← C ∪ {xi} and go to
step 3.

5. if i = max {j : xj /∈ C} do r = 0.

6. end for

7. end while

Remark 0.20. In (Sarria et al., 2014) is proved that the
map

f : 2X −→ Z
I −→ f(I) = |c(I)|

where c is the closure operator associated to the finite
topological space (X,T ), is a polymatroid which satis-
fies f ∈ λ(NT ) hence, in particular, the above algorithm
allows to determine the function values of f completely.

Now, let nK = |c(K)| be the cardinal number of the clo-
sure of K. In (Sarria et al., 2014) it is shown that if
FK = 2n − 2nK , the entropy function rA : 2X −→ R sat-
isfies

rA(I) = ln |A| − 2SI

|A|
ln 2

where

SI =
∑

I⊆c(K)

FK

MI =
∑

I�c(K)

FK

|A| = 2(MI + SI)

We can rewrite SI and MI as follows:

SI =
∑

I⊆c(K)

FK =
∑

I⊆c(K)

(2n − 2nK )

= 2n
∑

I⊆c(K)

[
1− 2nK−n

]
=: 2nS∗

I

MI =
∑

I�c(K)

FK =
∑

I�c(K)

(2n − 2nK )

= 2n
∑

I�c(K)

[
1− 2nK−n

]
=: 2nM∗

I

so that |A| = 2n+1(M∗
I + S∗

I ) and hence

rA(I) = ln |A| − 2SI

|A|
ln 2

= ln(2n+1(M∗
I + S∗

I ))−
2n+1S∗

I

2n+1(M∗
I + S∗

I )
ln 2

= (n+ 1) ln 2 + ln(M∗
I + S∗

I )−
S∗
I

(M∗
I + S∗

I )
ln 2

= ln(M∗
I + S∗

I ) +

[
n+

M∗
I

M∗
I + S∗

I

]
ln 2

Having the algorithm to find the closure of a subset K,
and therefore to calculate the values nK , S∗

I and M∗
I , we

can evaluate the function rA by the following algorithm.

Algorithm:Entropy function rA value in a subset I ⊆
X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Value rA(I).

1. Define M∗
I = S∗

I = 0.

2. for K ⊆ X

3. Calculate nK = |c(K)|.

4. if I ⊆ c(K) do S∗
I ← S∗

I + 1− 2nK−n

else M∗
I ← M∗

I + 1− 2nK−n

5. end for

6. Calculate rA(I) = ln(M∗
I + S∗

I ) +
[
n+

M∗
I

M∗
I +S∗

I

]
ln 2

Functions fU and fD: matrices UX and DX

Let (X,T ) be a finite topological space, U its minimal ba-
sis and D the minimal basis for Xop, the opposite space of
X, and consider the non-decreasing submodular function
f∆ : 2X −→ Z defined by

f∆(I) :=
∑
J∈∆

qJ(I)

where ∆ ⊆ 2X and qJ : 2X → {0, 1} is the map which
satisfies

qJ(I) :=

{
1 , I � J

0 , I ⊆ J

for each I, J ⊆ X. In (Abril, 2015) is proved that if B is
a subset of X then

fU (B) = |X| − |B�|
fD(B) = |X| − |B�|

where B� and B� denote the sets of upper and lower
bounds of B in (X,�), respectively.

These functions fU and fD are important to describe the
topology of the space, since they characterize the order
relation � given in (2):

xi � xj ⇐⇒ fD(xi) = fD(xi, xj) (5)

xi � xj ⇐⇒ fU (xj) = fU (xi, xj) (6)

Definition 0.21. Given a finite topological space X, we
define the matrix UX = [uij ] associated to the function
fU , as the matrix which satisfies uij = fU (xi, xj). Analo-
gously, we define the matrix DX = [dij ] associated to the
function fD as the matrix satisfying dij = fD(xi, xj).

Proposition 0.22. If TX is the topogenous matrix asso-
ciated to the finite topological space X, then

UX = n1− TXTT
X

DX = n1− TT
XTX

where 1 = [aij ] is the square matrix of size n×n such that
aij = 1 for all i, j ∈ In.

Proof. If E = {xi, xj}�, we show that |E| =
∑n

k=1 tiktjk:
in fact, we have the equivalences:

xk ∈ E ⇐⇒ xi � xk y xj � xk

⇐⇒ tik = 1 y tjk = 1

⇐⇒ tiktjk = 1

then each xk ∈ E provides a one in the sum
∑n

k=1 tiktjk,
thus having the required equality. Now, if TXTT

X = [cij ]
then cij =

∑n
k=1 tiktjk = |E| and hence

uij = fU (xi, xj) = |X| − |E| = n− cij = [n1− TXTT
X ]ij .
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ln 2
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I + S∗

I ))−
2n+1S∗

I

2n+1(M∗
I + S∗

I )
ln 2

= (n+ 1) ln 2 + ln(M∗
I + S∗

I )−
S∗
I

(M∗
I + S∗

I )
ln 2

= ln(M∗
I + S∗

I ) +

[
n+

M∗
I

M∗
I + S∗

I

]
ln 2

Having the algorithm to find the closure of a subset K,
and therefore to calculate the values nK , S∗

I and M∗
I , we

can evaluate the function rA by the following algorithm.

Algorithm:Entropy function rA value in a subset I ⊆
X

Input: Topogenous matrix TX = [tij ]n×n associated to
the space X, a subset I ⊆ X.

Output: Value rA(I).

1. Define M∗
I = S∗

I = 0.

2. for K ⊆ X

3. Calculate nK = |c(K)|.

4. if I ⊆ c(K) do S∗
I ← S∗

I + 1− 2nK−n

else M∗
I ← M∗

I + 1− 2nK−n

5. end for

6. Calculate rA(I) = ln(M∗
I + S∗
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]
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qJ(I)

where ∆ ⊆ 2X and qJ : 2X → {0, 1} is the map which
satisfies

qJ(I) :=

{
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for each I, J ⊆ X. In (Abril, 2015) is proved that if B is
a subset of X then

fU (B) = |X| − |B�|
fD(B) = |X| − |B�|

where B� and B� denote the sets of upper and lower
bounds of B in (X,�), respectively.

These functions fU and fD are important to describe the
topology of the space, since they characterize the order
relation � given in (2):

xi � xj ⇐⇒ fD(xi) = fD(xi, xj) (5)

xi � xj ⇐⇒ fU (xj) = fU (xi, xj) (6)

Definition 0.21. Given a finite topological space X, we
define the matrix UX = [uij ] associated to the function
fU , as the matrix which satisfies uij = fU (xi, xj). Analo-
gously, we define the matrix DX = [dij ] associated to the
function fD as the matrix satisfying dij = fD(xi, xj).

Proposition 0.22. If TX is the topogenous matrix asso-
ciated to the finite topological space X, then

UX = n1− TXTT
X

DX = n1− TT
XTX

where 1 = [aij ] is the square matrix of size n×n such that
aij = 1 for all i, j ∈ In.

Proof. If E = {xi, xj}�, we show that |E| =
∑n

k=1 tiktjk:
in fact, we have the equivalences:

xk ∈ E ⇐⇒ xi � xk y xj � xk

⇐⇒ tik = 1 y tjk = 1

⇐⇒ tiktjk = 1

then each xk ∈ E provides a one in the sum
∑n

k=1 tiktjk,
thus having the required equality. Now, if TXTT

X = [cij ]
then cij =

∑n
k=1 tiktjk = |E| and hence
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Having the algorithm to find the closure of a subset K,
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X

Input: Topogenous matrix TX = [tij ]n×n associated to
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Functions fU and fD: matrices UX and DX

Let (X,T ) be a finite topological space, U its minimal ba-
sis and D the minimal basis for Xop, the opposite space of
X, and consider the non-decreasing submodular function
f∆ : 2X −→ Z defined by

f∆(I) :=
∑
J∈∆

qJ(I)

where ∆ ⊆ 2X and qJ : 2X → {0, 1} is the map which
satisfies

qJ(I) :=

{
1 , I � J

0 , I ⊆ J

for each I, J ⊆ X. In (Abril, 2015) is proved that if B is
a subset of X then

fU (B) = |X| − |B�|
fD(B) = |X| − |B�|

where B� and B� denote the sets of upper and lower
bounds of B in (X,�), respectively.

These functions fU and fD are important to describe the
topology of the space, since they characterize the order
relation � given in (2):

xi � xj ⇐⇒ fD(xi) = fD(xi, xj) (5)

xi � xj ⇐⇒ fU (xj) = fU (xi, xj) (6)

Definition 0.21. Given a finite topological space X, we
define the matrix UX = [uij ] associated to the function
fU , as the matrix which satisfies uij = fU (xi, xj). Analo-
gously, we define the matrix DX = [dij ] associated to the
function fD as the matrix satisfying dij = fD(xi, xj).

Proposition 0.22. If TX is the topogenous matrix asso-
ciated to the finite topological space X, then

UX = n1− TXTT
X

DX = n1− TT
XTX

where 1 = [aij ] is the square matrix of size n×n such that
aij = 1 for all i, j ∈ In.

Proof. If E = {xi, xj}�, we show that |E| =
∑n

k=1 tiktjk:
in fact, we have the equivalences:

xk ∈ E ⇐⇒ xi � xk y xj � xk

⇐⇒ tik = 1 y tjk = 1

⇐⇒ tiktjk = 1

then each xk ∈ E provides a one in the sum
∑n

k=1 tiktjk,
thus having the required equality. Now, if TXTT

X = [cij ]
then cij =

∑n
k=1 tiktjk = |E| and hence

uij = fU (xi, xj) = |X| − |E| = n− cij = [n1− TXTT
X ]ij .

Let A = {xi, xj}�. By a similar argument above, we have

|A| =
∑n

k=1 tkitkj from which we get

dij = fD(xi, xj) = |X| − |A| = [n1− TT
XTX ]ij . �

Example 0.23. For the next T0 space

•x1•x2

•x3 •x4

•x5

•x6

TX =




1 0 0 1 1 1
0 1 1 1 1 1
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1




matrices UX and DX are:

UX =




2 3 6 3 4 5
3 1 5 3 4 5
6 5 5 6 6 6
3 3 6 3 4 5
4 4 6 4 4 5
5 5 6 5 5 5




DX =




5 6 6 5 5 5
6 5 5 5 5 5
6 5 4 5 5 5
5 5 5 3 3 3
5 5 5 3 2 2
5 5 5 3 2 1




Proposition 0.24. Let X be a finite topological space and
M = {xi1 , . . . , xim} a subset of X, then

fU (M) = n−
n∑

r=1

(
m∏

k=1

tikr

)

fD(M) = n−
n∑

r=1

(
m∏

k=1

trik

)

Proof.

xr ∈ M� ⇐⇒ xik � xr for all k = 1, . . . ,m

⇐⇒ tikr = 1 for all k = 1, . . . ,m

⇐⇒
m∏

k=1

tikr = 1

xr ∈ M� ⇐⇒ xr � xik for all k = 1, . . . ,m

⇐⇒ trik = 1 for all k = 1, . . . ,m

⇐⇒
m∏

k=1

trik = 1

Therefore

|M�| =
n∑

r=1

(
m∏

k=1

tikr

)
and |M�| =

n∑
r=1

(
m∏

k=1

trik

)
.

�

Proposition 0.22 allows to obtain the matrices UX and
DX from the topogenous matrix TX . Consider now the
reverse process of obtaining the topogenous matrix from
UX and from DX . In our matrix language, (5) and (6) are
equivalent to having

tij = 1 ⇐⇒ ujj = uij ⇐⇒ dii = dij

Therefore, we can reconstruct the topogenous matrix by
using the following algorithms:

Algorithm: Topogenous matrix from UX

Input: Matrix UX = [uij ]n×n associated to the function
fU of X.

Output: Topogenous matrix TX = [tij ]n×n associated to
the space X.

1. for i = 1 · · ·n

2. for j = 1 · · ·n

3. if i > j do tij = 0, else

4. tij = δ(uij − ujj , 0)

5. end for

6. end for



Matrices associated to finite topological spaces

135

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 41(158):127-136, enero-marzo de 2017
doi: http://dx.doi.org/10.18257/raccefyn.409

Let A = {xi, xj}�. By a similar argument above, we have

|A| =
∑n

k=1 tkitkj from which we get

dij = fD(xi, xj) = |X| − |A| = [n1− TT
XTX ]ij . �

Example 0.23. For the next T0 space

•x1•x2

•x3 •x4

•x5

•x6

TX =




1 0 0 1 1 1
0 1 1 1 1 1
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1


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reverse process of obtaining the topogenous matrix from
UX and from DX . In our matrix language, (5) and (6) are
equivalent to having

tij = 1 ⇐⇒ ujj = uij ⇐⇒ dii = dij

Therefore, we can reconstruct the topogenous matrix by
using the following algorithms:

Algorithm: Topogenous matrix from UX

Input: Matrix UX = [uij ]n×n associated to the function
fU of X.

Output: Topogenous matrix TX = [tij ]n×n associated to
the space X.

1. for i = 1 · · ·n

2. for j = 1 · · ·n

3. if i > j do tij = 0, else

4. tij = δ(uij − ujj , 0)

5. end for

6. end for
Algorithm: Topogenous matrix from DX

Input: Matrix DX = [dij ]n×n associated to the function
fD of X.

Output: Topogenous matrix TX = [tij ]n×n associated to
the space X.

1. for i = 1 · · ·n

2. for j = 1 · · ·n

3. if i > j do tij = 0, else

4. tij = δ(dij − dii, 0)

5. end for

6. end for

Remark 0.25. From proposition 0.24 and above algo-
rithms, we see that if M = {xi1 , . . . , xim} ⊆ X we have:

fU (M) = n−
n∑

r=1

(
m∏

k=1

δ(fU (xr)− fU (xik , xr), 0)

)

fD(M) = n−
n∑

r=1

(
m∏

k=1

δ(fD(xik)− fD(xik , xr), 0)

)

Therefore, functions fU and fD can be calculated for any
subset M of the space X, from the functions values in
the subsets of cardinality one and two through the above
explicit formulas.

Conclusions

We have seen how the considered matrices make easier the
topological study in finite spaces when we use submodular
functions, achieving to eliminate the need to draw Hasse
diagrams to find its values as was worked in (Abril, 2015)
and (Sarria et al., 2014). In future works, it can be
studied complexity of the shown algorithms and try to find
other topological concepts which could be characterized
from this matrix point of view.
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gotá, Colombia.

Alexandroff P. (1937). Diskrete Räume. Mat. Sb.
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(N.S.)2, 501-518.

Cuevas Rozo J. L. (2016). Funciones submodulares y
matrices en el estudio de los espacios topológicos finitos
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Krishnamurthy V. (1966). On the number of topologies
on a finite set. Amer. Math. Montly 73, 154-157.

Sarria, H., Roa L. & Varela R. (2014). Conexiones
entre los espacios topológicos finitos, las fd relaciones y las
funciones submodulares. Bolet́ın de Matemáticas, 21(1),
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