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Abstract

A family of analytical potential-density pairs for flat galaxies with spheroidal halos is presented. The potential are 
obtained by means of the sum of two independent terms: a potential associated with a thin disc and a potential 
associated with a spheroidal halo, which are expressed as appropriated superpositions of products of Legendre 
functions, in such a way that the model implies a linear relationship between the masses of the thin disc and the 
spheroidal halo. By taking a particular case for the halo potential, we found that the circular velocity obtained 
can be adjusted very accurately to the observed rotation curves of some specific galaxies, so that the models are 
stable against radial and vertical perturbations. Two particular models for the galaxies NGC4389 and UGC6969 are 
obtained by adjusting the circular velocity with data of the observed rotation curve of some galaxies of the Ursa 
Mayor Cluster, as reported in Verheijen and Sancisi (2001). The values of the halo mass and the disc mass for these 
two galaxies are computed obtaining a very narrow interval of values for these quantities. Furthermore, the values 
of obtained masses are in perfect agreement with the expected order of magnitude and with the relative order of 
magnitude between the halo mass and the disc mass. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat.
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Potenciales analíticos para galaxias planas con halos esferoidales

Resumen

Se presenta una familia de pares analíticos potencial-densidad para galaxias planas con halos esferoidales. Los 
potenciales son obtenidos por medio de la suma de dos términos independientes: un potencial asociado al disco 
delgado y un potencial asociado al halo esferoidal, los cuales son expresados apropiadamente como la superposición 
de productos de funciones de Legendre, de tal manera que el modelo implica una relación lineal entre las masas 
del disco delgado y el halo esferoidal. Tomando un caso particular para el potencial del halo, encontramos que 
la velocidad circular obtenida puede ser ajustada muy precisamente con la curva de rotación de algunas galaxias 
específicas, de tal manera que los modelos son estables contra perturbaciones radiales y verticales. Dos modelos 
particulares para las galaxias NGC4389 y UGC6969 son obtenidos ajustando la velocidad circular del modelo con 
datos de la curva de rotación observada de algunas galaxias del Cluster de la Osa Mayor, reportados en Verheijen 
and Sancisi (2001). Los valores de la masa del halo y la masa del disco para estas dos galaxias son calculados 
obteniendo un intervalo muy estrecho de valores para dichas cantidades. Además, los valores de masa aquí obtenidos 
están en perfecto acuerdo con el orden de magnitud esperado y con el orden de magnitud relativo entre la masa del 
halo y la masa del disco. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat.
Palabras clave: Teoría del Potencial; Galaxias de Disco; Mecánica Celeste; Masa de Galaxias.
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Introduction
One of the oldest and most important problems in galactic 
dynamics is the determination of the mass distribution based 
on the observations of the circular velocity or rotation curve 
(Pierens and Hure, 2004), defined as the speed of the stars 
moving in the galactic plane in circular orbits around the center. 
Now, if we assume a particular model for the composition of 
the galaxy, the fit of that model with the rotation curve of a 
particular galaxy can, in principle, completely determine the 
distribution of mass. So then, the rotation curve provides the 
most direct method to measure the distribution of mass of a 
galaxy (Binney and Tremaine, 2008).

Currently, the most accepted description of the compo-
sition of spiral galaxies is that a significant portion of 
its mass is concentrated in a thin disc, while the other 
contributions to the total mass of the galaxy come from a 
spherical halo of dark matter, a central bulge and, perhaps, 
a central black hole (Binney and Tremaine, 2008). Now, 
since all components contribute to the gravitational field of 
the galaxy, obtaining appropriate models that include the 
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effects of all parts is a problem of great difficulty. However, 
the contribution of each part is limited to certain distance 
scales, so in a reasonably realistic model it is not necessary 
to include the contribution of all components (Faber, 2006).

In particular, the gravitational influence of the central 
black hole is appreciable only within a few parsecs around 
the center of the galaxy (Schӧdel, et al., 2002), so it can 
be completely neglected when studying the dynamics of 
the disc, or in regions outside the central bulge, while the 
bulge mainly dominates the inner region of the galaxy to 
a few kiloparsec. So then, the main contributions to the 
gravitational field of the galaxy come from the galactic 
disc and the dark matter halo (Faber, 2006). However, it is 
commonly accepted that many aspects of galactic dynamics 
can be described, in a fairly approximate way, using models 
that consider only the contribution of a thin galactic disc 
(Binney and Tremaine, 2008).

Accordingly, the study of the gravitational potential 
generated by an idealized thin disc is a problem of great 
astrophysical relevance and so, through the years, different 
approaches have been used to obtain such kind of thin disc 
models (see Binney and Tremaine (2008) and referen-
ces therein). So, once an expression for the gravitational 
potential has been derived, corresponding expressions for 
the surface mass density of the disc and for the circular 
velocity of the disc particles can be obtained. Then, if the 
expression for the circular velocity can be adjusted to fit 
the observational data of the rotation curve of a particular 
galaxy, the total mass can be obtained by integrating the 
corresponding surface mass density.

However, although most of these thin disc models 
have surface densities and rotation curves with remarkable 
properties, many of them mainly represent discs of infinite 
extension and thus they are rather poor flat galaxy models. 
Therefore, in order to obtain more realistic models of 
flat galaxies, it is better to consider methods that permit 
obtaining finite thin disc models. Now, a simple method 
to obtain the gravitational potential, the surface density 
and the rotation curve of thin discs of finite radius was 
developed by Hunter (1963), the simplest example of a 
disc obtained by this method being the well known Kalnajs 
(1972) disc.

In a previous paper (González and Reina, 2006) 
we used the Hunter method in order to obtain an infinite 
family of thin discs of finite radius with a well-behaved 
surface mass density. This family of disc models was 
derived by requiring that the surface density behaves as 
a monotonously decreasing function of the radius, with a 
maximum at the center of the disc and vanishing at the edge. 
Furthermore, the motion of test particles in the gravitational 
fields generated by the first four members of this family 
was studied in Ramos-Caro, López-Suspez and González 
(2008). So, although the mass distribution of this family of 
discs presents a satisfactory behaviour in such a way that 
they could be considered adequate as flat galaxy models, 

their corresponding rotation curves do not present a so good 
behavior, as they do not reproduce the flat region of the 
observed rotation curve.

On the other hand, in Pedraza, Ramos-Caro and 
González (2008) a new family of discs was obtained as a 
superposition of members of the previously obtained family, 
by requiring that the surface density be expressed as a well-
behaved function of the gravitational potential, in such a way 
that the corresponding distribution functions can be easily 
obtained. Furthermore, besides presenting a well-behaved 
surface density, the models also presented rotation curves 
with a better behavior than the generalized Kalnajs discs. 
However, although these discs are stable against small radial 
perturbations of disc star orbits, they are unstable to small 
vertical perturbations normal to the disc plane. Then, apart 
from the stability problems, these discs can be considered as 
quite adequate models in order to satisfactorily describe a 
great variety of galaxies.

Based on these works, in González, Plata-Plata and 
Ramos-Caro (2010) were obtained some thin disc models in 
which the circular velocities were adjusted to very accurately 
fit the observed rotation curves of four spiral galaxies of 
the Ursa Major cluster, galaxies NGC3877, NGC3917, 
NGC3949 and NGC4010. These models presented well-
behaved surface densities and the obtained values for the 
corresponding total mass agree with the expected order of 
magnitude. However, the models presented a central region 
with strong instability to small vertical perturbations. Now, 
this result was expected as a consequence of the fact that the 
models only consider the thin galactic disc. Therefore, more 
realistic models must be considered including the non-thin 
character of the galactic disc or the mass contribution of the 
spheroidal halo.

In agreement with the above considerations, in this paper 
we will consider a family of models obtained by expressing 
the gravitational potential as the superposition of a potential 
generated by the thin galactic disc and a potential generated 
by the spheroidal halo, in such a way that the model implies 
a linear relationship between the masses of the thin disc 
and the spheroidal halo. By adjusting the corresponding 
expression for the circular velocity to the observed data of 
the rotation curve of some specific galaxies, some particular 
models will be analysed. Then, from the corresponding 
expressions for the disc surface density and the density 
of the halo, estimate values for the total mass of the disc 
and the total mass of the halo will be obtained. The paper 
is organised as follows. First we present the thin disc plus 
halo model. Then, we obtain the corresponding expressions 
for particular models, and then the models are fitted to data 
of the observed rotation curve of some galaxies of the Ursa 
Mayor Cluster, as reported in Verheijen and Sancisi (2001). 
Finally, we discuss the obtained results.
The Thin Disc Plus Halo Model
In order to obtain galaxy models consisting of a thin galactic 
disc and a spheroidal halo, we begin considering an axially 
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symmetric gravitational potential Φ = Φ (R, z), where (R, 
φ, z) are the usual cylindrical coordinates. Also, besides the 
axial symmetry, we suppose that the potential has symmetry 
of reflection with respect to the plane z = 0,
                                  Φ (R, z) = Φ (R, - z),                        (1)
which implies that the normal derivative of the potential 
satisfies the relation

                                                   (2)

in agreement with the attractive character of the gravita-
tional field. We also assume that ∂ Φ / ∂z does not vanish on 
the plane z = 0, in order to have a thin distribution of matter 
that represents the disc.

On the other hand, in order to separately describe the 
thin disc and the spheroidal halo, we consider that the 
gravitational potential can be written as the superposition of 
two independent components
                        Φ (R, z) = Φd (R, z) + Φh (R, z),                  (3)
where Φd (R, z) is the part of the potential generated by 
the thin galactic disc, while Φh (R, z) corresponds to the 
spheroidal halo component. The disc component Φd (R, 
z) must be a solution of the Laplace equation everywhere 
outside the disc,
                                        ∇2 Φd = 0,                                   (4)
while the halo component Φh (R, z) satisfies the Poisson 
equation
                                     ∇2 Φh = 4πG ,                               (5)
where ϱ(R, z) is the mass density of the halo.

So, given a potential Φ (R, z) with the previous 
properties, we can easily obtain the circular velocity ʋc (R), 
defined as the velocity of the stars moving at the galactic disc 
in circular orbits around the center, through the relationship

                                                           (6)

while the surface mass density Σ(R) of the thin galactic disc 
is given by
                                                     (7)

which it is obtained by using the Gauss law and the reflection 
symmetry of Φ (R, z).

Accordingly, in order that the potential of the spheroidal 
halo does not contribute to the disc surface density, we will 
impose the condition

                                                                    (8)

Furthermore, in order to have a surface density corre-
sponding to a finite disclike distribution of matter, we impose 
boundary conditions in the form

                                                   (9a)

                                                    (9b)

in such a way that the matter distribution is restricted to the 
disc z = 0, 0 ≤ R ≤ a, where a is the radius of the disc.

In order to properly pose the boundary value problem, we 
introduce the oblate spheroidal coordinates, whose symmetry 
adapts in a natural way to the geometry of the model. These 
coordinates are related to the usual cylindrical coordinates 
by the relation (Morse and Fesbach, 1953)

                                                (10a)
                                                                          (10b)
where 0 ≤ ξ < ∞ and −1 ≤ η < 1. The disc has the coordinates 
ξ = 0, 0 ≤ η2 < 1. On crossing the disc, the η coordinate 
changes sign but does not change in absolute value. The 
singular behaviour of this coordinate implies that an even 
function of η is a continuous function everywhere but has a 
discontinuous η derivative at the disc.

Now, in terms of the oblate spheroidal coordinates, the 
Laplace operator acting over any axially symmetric function 
Φ (ξ, η) gives

                       (11)

Whereas the boundary condition (8) is equivalent to

                                                                  (12a)

                                                                  (12b)

and the boundary conditions (9a) and (9b) reduce to

                                                                  (13a)

                                                                  (13b)

Moreover, in order for the gravitational potential to be 
continuous everywhere, Φ (ξ, η) must be an even function 
of η, which grants also the fulfilment of conditions (12b) 
and (13b).

Accordingly, by imposing the previous boundary condi-
tions over the general solution of the Laplace equation in 
oblate spheroidal coordinates, we can write the gravitational 
potential of the galactic disc as (Bateman, 1944)

                                    (14)

where n is a positive integer, which it defines the model of disc 
considered. Here P2l (η) are the usual Legendre polynomials 
and q2l (ξ) = i2l +1Q2l (iξ), with Q2l (x) the Legendre func-
tions of second kind (see Arfken and Weber (2005) and, 
for the Legendre functions of imaginary argument, Morse 
and Fesbach (1953), page 1328). The coefficients C2l are, in 
principle, arbitrary constants, though they must be specified 
to obtain any particular model. We will do this later on, by 
adjusting the circular velocity of the model with the observed 
data of the rotation curve of some specific galaxies.

With this expression for the gravitational potential of 
the disc, the surface density is given by
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                   (15)

where, as , with  Then, by inte-
grating on the total area of the disc, we find the value
                                                                       (16)

for the total mass of the disc. Now, it is clear that the surface 
density diverges at the disc edge, when η = 0, unless that we 
impose the condition (Hunter, 1963)   

                                      (17)

that, after using the identities

                                               (18a)

                                                      (18b)

which are easily obtained from the properties of the Legendre 
functions, leads to the expression

                                                        (19)

which gives, through (16), the value of the disc mass Md in 
terms of the constants C2l, with l ≥ 1.

Now, to properly choose the gravitational potential of 
the spheroidal halo, we consider the superposition

                                  (20)

where m is a positive integer, which defines the model of halo 
considered, and the coefficients Bjk are arbitrary constants 
which must be specified to obtain any particular model. 
Here (Lamb, 1945)

                                                   (21)

are the solutions of the differential equation

                     (22)

while the associated Legendre functions (Arfken and 
Weber, 2005),
                                               (23)

are the solutions of the differential equation

                 (24)

where j and k are integers, with j ≥ k. On the other hand, 
due to the discontinuous character of η, Φh (ξ, η) will be 
continuous everywhere only if we take (j − k) as an even 
number in order that Pk

j (η) be an even function of η.
With the previous expressions, and using the Laplace oper-
ator in oblate spheroidal coordinates (11) in the Poisson 
equation (5), we obtain for the mass density of the halo the 
expression
                                     (25)

Where
                                           (26)

Now, from (23) and (26) it is easy to see that at the z 
axis, when η = ±1, the function ϱk

j (ξ, η) diverges for k = 
1 and vanishes for k > 2. Accordingly, in order to have a 
well behaved mass density for the halo, we only consider 
in expression (20) the terms with k = 0 and k = 2 and so, in 
order to grant the continuity of the potential, we must take j 
as an even number. Furthermore, in order to have a nonzero 
mass density for the halo, we must consider models with m 
≥ 2. Finally, as Pk

j (η) is finite at the interval −1 ≤ η ≤ 1 and 
qk

j (ξ) goes to zero when ξ → ∞, ϱ(ξ, η) properly vanishes 
at infinity.

A simple possibility for the halo potential in agreement 
with the above considerations is given by taking (20) with 
m = 4,

             (27)

in such a way that at least two terms in (25) contribute to the 
mass halo density. Then, after using the explicit expressions 
for qk

j (ξ) and Pk
j (η), the halo density can be written as

 

        (28)

which is maximum at the disc surface, when ξ = 0, and 
then fastly decreases being constant at the oblate spheroids 
defined by ξ = cte.

By integrating over all the space, we obtain the expression

                                                          (29)

Where Mh is the total mass of the halo. Furthermore, 
from the condition (12a), we obtain the relations

                                                     (30a)

                                                   (30b)

                                                       (30c)

Finally, solving the system of equations (29) and (30), 
we obtain
                                                                 (31a)

 
                                                     (31b)

                                                        (31c)
      

                                                               (31d)
and so all the constants in (27) are expressed in terms of 
the halo mass Mh and the coefficient B42.
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On the other hand, if we restrict to particles moving in 
the thin disc, the circular velocity is written in terms of the 
spheroidal coordinates as

                                                     (32)

which, by using (3), (14), (27) and the properties of the Le-
gendre functions, reduces to

                                               (33)
where
                                 (34a)

 
                                                (34b)
and 
                                                                 (35)
for l ≥ 3. Then, by using (19), (34a), (34b) and (35), it is easy 
to establish that

                    (36)

and thus the model implies a linear relationship between 
Md and Mh, where the independent term is determined by 
the constants 2l, with l ≥ 1, and the coefficient B42. Now, 
it is clear that the above relationship makes sense only if 
the right hand side it is positive, which should be checked 
for every set of constants 2l corresponding to any particular 
model. The coefficient B42 must be chosen in such a way that 
the model represent galaxies with a surface density mass and 
vertical frequency with a physically acceptable behavior.
Obtaining Particular Models
In order to obtain particular models, we must specify the 
constants 2l of the general model. So, we will adjust these 
constants in such a way that the circular velocity ʋ2

c ( ) fits 
with the data of the rotation curve of some particular galaxy. 
As expression (33) for the circular velocity only involves 
derivatives of the Legendre polynomials of even order, it can 
be written as the rotation law (González, Plata-Plata and 
Ramos-Caro, 2010)

                                                           (37)

where the A2l constants are related with the previous 
constants 2l, for l ≠ 0, through the relation

                                             (38)
where
                                          (39)

which is obtained by equaling expressions (33) and (37) 
and by using the orthogonality properties of the associated 
Legendre functions (Arfken and Weber, 2005).
Then, if the constants A2l are determined by a fitting of the 
observational data of the corresponding rotation curve, the 
corresponding values of the coefficients 2l can be determined 
by means of relation (38), obtaining then a particular case of 
(36) corresponding to a specific galaxy model, which can 
be written in terms of the constants A2l as

  (40)

However, this relation does not determine completely 
the values of Md and Mh, but only gives a linear relationship 
between them. So, in order to restrict the allowed values of 
these masses, it is needed to analyse the behaviour of some 
other quantities characterizing the kinematics of the model. 
These features are the epicycle or radial frequency, κ2(R), 
and the vertical frequency, ν2(R), which describe the stability 
against radial and vertical perturbations of particles in 
quasi-circular orbits (Binney and Tremaine, 2008). These 
frequencies, which must be positive in order to have stable 
circular orbits, are defined as

                                                       (41)

                                                       (42)

where

                                                      (43)

is the effective potential and ℓ = Rvc is the specific axial 
angular momentum. Then, by using expression (6) for the 
circular velocity, we can write the above expressions as

                                                     (44)

                                              (45)

where we also used the expression for the Laplace operator 
in cylindrical coordinates.

Now, by using (37), the epicycle frequency can be cast as

                                         (46)

where  = aκ. It is easy to notice that the above expression 
is completely determined by the set of constants A2l, which 
are fixed by the numerical fit of the rotation curve data, such 
that it is not possible to find a relation between the disc and 
halo masses that can be adjusted by requiring radial stability. 
On the other hand, by using the Poisson equation (5), the 
expression (28) for the halo density and the expression (37) 
for the circular velocity, we find that the vertical frequency 
can be written as
                                      (47)
where  = aν,
        (48)

and

                                                  (49)

Thus, as 2 must be positive everywhere at the interval 
0 ≤  ≤ 1 in order to have vertically stable models, it must 
satisfy that
                                                       (50)
which give us a range for Mh y B42 such that 2 ≥ 0.
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Now, we also need to consider the behavior of the 
surface mass density, which by using the condition (17) 
and replacing (34a) and (34b) in (15), can be written as

                     (51)

Where

         (52)

and 
                (53)

So, in order for the surface mass density to be positive 
in the interval 0 ≤  ≤ 1, it must be met that
                                                       (54)
The relation (54) give us another range of values, not 
necessarily equal to the relation (50), for which we obtain 
a surface density mass with a acceptable behavior. Then, 
in order that the model make sense, we must verify that it 
meets the relation
                   (55)
which should be checked for every set of constants 
corresponding to any particular model.
Adjusting Data to Models
In order to illustrate the above model to the real observed 
data, we have taken a sample of spiral galaxies of the Ursa 
Major cluster. We pick the corresponding data out from 
Table 4 of the paper by Verheijen and Sancisi (2001), 
which presents the results of an extensive 21 cm-line 
synthesis imaging survey of 41 galaxies in the nearby of 
the Ursa Major cluster using the Westerbork Synthesis 
Radio Telescope. The mean distance between this telescope 
and the cluster is 18.6 Mpc. At this distance, 1 arcmin 
corresponds to 5.4 kpc.

For each rotation curve data, we take as the value of a, the 
value given by the last tabulated radius, i.e. we are assuming 
that the radius of each galaxy is defined by its corresponding 
last observed value. Although this assumption about the 
galactic radius do not agrees with the accepted standard 
about the edge of the stellar disc (Binney and Merrifield, 
1998), we will make it since we are assuming that all the 
stars moving in circular orbits at the galactic plane are inside 
the disc and that there are no stars moving outside the disc. 
Thereafter we take the radii normalized in units of a to fit the 
rotation curve of every galaxy by mean of the model (37).

The fits are made through a non-linear least squares 
fitting using the Levenberg-Marquardt algorithm, imple-
mented internally by ROOT version 5.28 (Brun and 
Rademakers, 1997), which minimizes the weighted sum 
of squares of deviations between the fit and the data. We 
assigned weights to the data points inversely proportional 
to the square of their errors. These errors corresponding to 
2vΔv being Δv the galaxy velocity measurement error. For 
each galaxy, initially we look for all the possible fits starting 
at m = 1 up to m = N − 1, with N the number of measured 

data pairs (R, v2), hence we find a value for m such that we 
get the minimum reduced chi square χ2

r (the best fit). Now 
we can discard the galaxies that do not pass the reduced chi 
squared test with a confidence level of 95% (Bevington and 
Keith, 2003).

The 2l constants are calculated by using the relations 
(19), (35) and (38). Therefore, by using this set of constants 
in (49) and (52) we find for each galaxy the functions f1 
and f2. Finally, through a routine made in Mathematica 8.0., 
we check for each galaxy of the sample the validity of the 
condition (55). However, when we check the consistency 
of the adjust, we found that only the fit of the data for the 
galaxies NGC4389 and UGC6969 it agrees with these 
conditions, whereas that for all the other galaxies we found 
that the solution interval for Mh and B42, given by (55),                  
is empty.

In Table 1 we present the values of the constants A2l, in 
units of 106m2s−2, obtained by the numerical adjust with the 
rotation curve data for galaxies NGC4389 and UGC6969. 
With this values for the constants, we obtain, from (40), for 
the galaxy NGC4389 the relationship 
        Mh + 4 Md = 5.72442 × 1040 − 4.2641 × 1032 B42,    (56)
and for the galaxy UGC6969 the relationship 
      Mh + 4 Md = 2.42036 × 1040 − 3.56507 × 1032 B42,    (57)
where all the quantities are in kg.

In Figure 1, we present the region that represent the 
solution interval of the condition (55) for the galaxies 
NGC4389 and UGC6969. This region represent the values 
that the halo mass and the coefficient B42 can take, in order 
to obtain galaxy models with a vertical frequency always 
positive and with a surface density that has a maximum 
value at the disc centre and then decreases as  increases, 
vanishing at the disc edge.

In Table 2 we present, based on the values obtained by 
the condition (55) and plotted in the Figure 1, the minimum 
and maximum values for the halo mass of each galaxy 
and the disc mass calculated from the relations (56) and 
(57), in units of 1010M , whereas in Table 3 we present the 
respectives values of the coefficient B42, in units of 106 m2s−2.

In Figure 2, we show the adjusted rotation curve for 
these two galaxies. The points with error bars are the obser-
vations as reported in Verheijen and Sancisi (2001), while 
the solid line are the circular velocity determined from 
(37) and the A2l parameters given by the best fit. As we can 
see, for the two galaxies we get a fairly accurate numerical 
adjustment with the observational rotation curve.

Table 1. Constants A2l in units of 106 m2s−2

NGC4389 UGC6969

A2 30087.0 ± 2489.3 16387.4 ± 3322.3

A4  -57552.0 ± 16144.7 -46813.5 ± 22369.7

A6 67317.2 ± 30484.7 71401.6 ± 43160.4

A8 -27760.5 ± 16936.1 -34747.1 ± 24192.1
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In figure 3 we show the epicycle frequency for the 
two galaxies. It is easy to see that this quantity is always 
positive, which means that the galaxies are stable against 
radial perturbations. In figure 4 we present the vertical 
frequency for the two models. For the two galaxies, the solid 
line represent the vertical frequency by taking the minimum 
value for the halo mass, whereas the dashed line represent the 
vertical frequency by using the maximum value for the halo 
mass. As can be notice in the figure, for the two galaxies the 
vertical frequency is positive over the entire range of , so 
the models are stable against vertical perturbations. It is easy 
to verify that for any other value of the halo mass and the 
corresponding parameter B42, as determined from figure 1, 
the vertical frequency remains positive in all range .

In Figure 5 we present the corresponding plots of the 
surface mass density for the two galaxies. As in the previous 
case, for both galaxies the solid line represents the behavior 

of the surface mass density by taking the minimum value 
for the halo mass, while the dashed line is the surface 
mass density for the maximum value of the halo mass. The 
behavior of this quantity is similar for both galaxies, i.e. the 
surface mass has a maximum value at the disc centre and 
then decreases as  increases, vanishing at the disc edge.

Finally, from (28), in figure 6 we show the contours of 
the halo density distribution for the galaxy NGC4389. In plot 
(a), the contours are drawn using the minimum value for the 
halo mass, while in plot (b) we present the contours using the 
maximum value for the halo mass. Similarly, in figure 7 we 
show the same quantities, but for the galaxy UGC6969. In 
both cases, the density profiles are positive and do not have 
discontinuities in all range , z, taking a maximum value at 
center and smoothly decreasing to zero when → ∞.

Concluding Remarks

We have presented a family of analytical potentials for flat 
galaxies with spheroidal halos characterised by a linear 
relationship between the halo mass and the disc mass. The 
models are stable against radial and vertical perturbations, 
and their circular velocities can be adjusted very accurately 
to the observed rotation curves of some specific galaxies. 
The here presented models are a generalisation of the 
models presented in González, Plata-Plata and Ramos-
Caro (2010), where only models with a thin galactic disc 
are considered. The generalisation was obtained by adding 
to the gravitational potential of the thin disc the gravitational 
potential corresponding to a spheroidal halo, in such a way 
that we have solved the problem of vertical unstability 
presented by the previous models.

Table 2. Mh and Md in units of 1010M . 

NGC4389 NGC6969
min max min max

Mh 0.962 2.327 0.507 0.903

Md 0.065 0.378 0.036 0.137

Table 3. Coefficient B42 in units of 106 m2s−2.

NGC4389 NGC6969
min max min max

B42 18.82 13.56 8.97 9.48
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Figure 1. Solution interval of the condition (55). In (a) we show the interval of parameters Mh and B42 for the galaxy NGC4389. In (b) we 
show the interval of parameters Mh and B42 for the galaxy UGC6969.
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Figure 4. Vertical frequency 2 × 10−3 in (km/s)2, as a function of the dimensionless radial coordinate , for the galaxies NGC4389 and 
UGC6969. The solid line represents the vertical frequency by taking the minimum value for the halo mass, whereas the dashed line 
represents the vertical frequency by using the maximum value for the halo mass.
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Figure 2. Circular velocity ʋc, as a function of the dimensionless radial coordinate , for the galaxies NGC4389 and UGC6969. Error bars 
represent the observed data by Verheijen and Sancisi (2001), while the solid line are the circular velocity determined from (37), and the 
A2l parameters given by the best fit.

Figure 3. Epicycle frequency  2 ×10−3 in (km/s)2, as a function of the dimensionless radial coordinate , for the galaxies NGC4389 
and UGC6969.
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Figure 5. Surface mass density Σ × 10−2 in (kg/m2), as a function of the dimensionless radial coordinate , for the galaxies NGC4389 and 
UGC6969. The solid line represents the surface mass density by taking the minimum value for the halo mass, whereas the dashed line 
represents the surface mass density by using the maximum value for the halo mass.

Figure 6. Contours of the halo density distribution for the galaxy NGC4389. In (a) we show the contours for the minimum value of halo 
mass. In (b) we show the contours using the maximum value of halo mass.

Figure 7. Contours of the halo density distribution for the galaxy UGC6969. In (a) we show the contours for the minimum value of halo 
mass. In (b) we show the contours using the maximum value of halo mass.
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Two particular models were obtained by a numerical 
fit of the general expression (37) for the circular velocity 
with the observed data of the rotation curve of galaxies 
NGC4389 and UGC6969. For these two galaxies we have 
obtained a fairly accurate numerical adjustment with the 
rotation curve and, from the constants A2l obtained with the 
numerical fit, we compute the values of the halo mass, the 
disc mass and the total mass for these two galaxies in such a 
way that we obtain a very narrow interval of values for these 
quantities. Furthermore, the values of masses here obtained 
are in agreement with the expected order of magnitude, 
between about 108 and 1012 M , and with the relative order 
of magnitude between the halo mass and the disc mass, Md/
Mh ≈ 0.1, (Ashman, 1990). Accordingly, we believe that the 
values of mass obtained for the two studied galaxies may 
be taken as a very accurate estimate of the upper and lower 
bounds for the mass of the galactic disc and for the mass of 
the spheroidal halo in these two galaxies. Additionally, the 
density profiles obtained satisfy several conditions which 
are necessary to describe real galactic systems, i.e. they are 
positive and not have discontinuities in all range , z, taking 
a maximum value at center and smoothly decreasing its 
value to zero when → ∞.

However, although we tested the applicability of the 
present model with all the galaxies reported by Verheijen 
and Sancisi (2001), consistent models were obtained only 
for the two galaxies NGC4389 and UGC6969, whereas 
for all the other galaxies were obtained models with 
values of the halo mass such that the condition (55) is not 
satisfied. Now, it can be considered that this result occurs 
as a consequence of the simple halo model that we have 
taken here. Indeed, as we can see from expressions (26) 
and (27), only one term of the gravitational potential of the 
halo contributes to their density, what leaves only one free 
constant to be determined in order to fit the model to the 
imposed consistency conditions. This constant is precisely 
the mass of the halo, Mh, which is determined by requiring 
the positiveness of the vertical frequency and the surface 
mass density. On the other hand, if we consider additional 
terms in expression (27) for the halo potential, we will have 
new free parameters that perhaps allow to better adjust the 
model to properly describe the behavior of other galaxies 
besides the two considered here.

In agreement with the above considerations, we can 
consider the simple set of models here presented as a fairly 
good approximation to obtaining quite realistic models of 
galaxies. In particular, we believe that the values of mass 
obtained for the two galaxies here studied may be taken as a 
very accurate estimate of the upper and lower bounds for the 
mass of the galactic disc and for the mass of the spheroidal 
halo in these two galaxies. Accordingly, we are now working 
on a more involved model, obtained by including additional 
terms in expression (27) for the halo potential, in order to 
get some particular models that can be properly adjusted 
with the observed data of the rotation curve of some other 
galaxies besides the two here considered.

Acknowledgments
The authors were supported in part by VIE-UIS, under 
grant number 1838, and COLCIENCIAS, Colombia, 
under grant number 8840. JIR wants to thank the support 
from Vicerrectoría Académica, Universidad Santo Tomás, 
Bucaramanga.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Arfken, G. and Weber, H. (2005). Mathematical Methods for 

Physicists. 6th ed. Academic Press.
Ashman, K. M. (1990). The origin of mass, disk-to-halo mass ratio 

and L-V relation of spiral galaxies. Astrophys. J., 359, 15.
Bateman, H. (1944). Partial Differential Equations. Dover.
Bevington, P. and Keith, D. (2003). Data Reduction and Error 

Analysis for the Physical Sciences. 3rd Ed., Mc Graw Hill.
Binney, J. and Merrifield, M. (1998). Galactic Astronomy. 

Princeton University Press.
Binney, J. and Tremaine, S. (2008). Galactic Dynamics. 2nd ed. 

Princeton University Press.
Brun, R. and Rademakers, F. (1997). ROOT - An object oriented 

data analysis framework. Nucl. Instrum. Meth. in Phys. 
Res. A, 389, 81.

González, G. A., Plata-Plata, S. and Ramos-Caro, J. (2010). 
Finite thin disk models of four galaxies in the Ursa Major 
cluster: NGC3877, NGC3917, NGC3949 and NGC4010. 
MNRAS, 404, 468.

González, G. A. and Reina, J. I. (2006). An infinite family of 
generalized Kalnajs disks. MNRAS, 371, 1873.

Faber, T. (2006). Galactic halos and gravastars: static spherically 
symmetric spacetimes in modern general relativity and 
astrophysics, M. Sc. Thesis in Applied Mathematics, Victoria 
University of Wellington.

Hunter, C. (1963). The structure and stability of self-gravitating 
disks. MNRAS, 126, 299.

Kalnajs, A. J. (1972). The equilibria and oscillations of a family 
of uniformly rotating stellar disks. Astrophys. J., 175, 63.

Lamb, H. (1945). Hydrodynamics. Dover.
Morse, P. M. and Fesbach, H. (1953). Methods of Theoretical 

Physics, Mc Graw Hill.
Pedraza J. F., Ramos-Caro J. and González G. A. (2008). An 

infinite family of self-consistent models for axisymmetric 
flat galaxies. MNRAS, 390, 1587.

Pierens, A. and Hure, J. (2004). Rotation curves of galactic disks 
for arbitrary surface density profiles: a simple and efficient 
recipe. Astrophys. J., 605, 179.

Ramos-Caro J., López-Suspez F. and González G. A. (2008). 
Chaotic and Regular Motion Around Generalized Kalnajs 
disks. MNRAS, 386, 440.

Schödel, R. et al. (2002). A star in a 15.2-year orbit around the 
supermassive black hole at the centre of the Milky Way. 
Nature, 419, 694.

Verheijen, M. A.W. and Sancisi, R. (2001). The Ursa Major 
cluster of galaxies. IV. HI synthesis observations. Astron. 
Astrophys., 370, 765.


