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Abstract

We use the construction of an independence relation to prove that p-forking is equivalent to forking of a stable
formula (in the sense of st-forking, see Definition 1.3) in all theories, and to show that from p-dividing one can
always achieve strong dividing over a base which is in the definable closure of the parameter set.
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p-Bifurcacién y Propiedad de la Bifurcacién Estable.
Resumen

Usamos una contruccién particular de una relacion de independencia para demostrar que en cualquier teoria
p-bifurcacién es equivalente a bifurcacién con una férmula estable (en el sentido especifico de st-bifurcacién
dada en la Definicién 1.3). También demostramos que si tenemos p-divisiéon podemos lograr divisién fuerte
sobre una base que pertenece a la clausura algebraica del conjunto pardmetro.

Palabras clave: Conjetura de Bifurcacion Estable, p-Bifurcacién.

I Mathematics

1. Introduction

Notions of size and dimension have been key invariants
in mathematics for a long time. It was “Peano’s Curve”,
a continuous surjective mapping from the interval (0,1)
to the whole plane, which was so counterintuitive that
trying to understand this phenomenon prompted great
contributions to general topology.

This concept of dimension has been generalized within
model theory by abstract independence notions, starting
with Morley’s rank (Morley (1965)) which then turned
into Shelah’s definition of forking (see for example She-
lah (1990)) which turned out to be the most important
notion in the development of stable and simple theories.
For a long time forking was seen as the correct general-
ization of topological dimension, but it had the limitation
of only working in the appropriate contexts: simple and
stable theories.

In the early 2000’s, we started studying a new indepen-
dence notion called p-forking (see for example Onshuus
(2006)). The construction was similar to Shelah’s forking,
except that instead of requiring sets indexed by an indis-

cernible sequence to be “almost disjoint” (k-inconsistent),
we required sets with parameters varying over definable
families to be k-inconsistent. This lead to a notion of inde-
pendence which captured both forking in stable theories
and topological independence in o-minimal theories. It
was later that we understood, when analyzing the role of
forking and p-forking in the context of the real numbers,
that forking was much closer to a notion of “largeness”
derived from measure theory than the notion of geomet-
ric dimension it was thought to generalize. The reason
that in stable contexts forking gave us a notion of dimen-
sion was simply there these two notions coincided. Let us
explain what we mean by this.

In the real plane, lines and points are “smaller” than the
whole plane, and this is captured by having smaller di-
mension (p-forking). The unit square, however, also has
dimension 2 but it is still smaller than the plane in the
sense that it has finite measure: finitely many translates
of the box cannot cover the plane. Bounding a set in the
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sense of measure causes forking, and forking-wise the box
is smaller than the plane. Making it smaller in the sense
of dimension causes p-forking, and while the line and a
point are smaller than the plane in the sense of p-forking,
the box is not.

The reason that for many years model theorists believed
forking (and Morley rank) was a generalization of dimen-
sion is that in the right context, (such as algebraic geome-
try) the two notions coincide: Given a (complex) algebraic
group (G, -) and an algebraic subset X of the same dimen-
sion as G, we know that G is always covered by finitely
many cosets of X (sets of the form a- X with a € G).
More generally, given an algebraic variety X (over the
complex field C), then one cannot find infinitely many dis-
joint subvarieties of X of the same dimension. The reader
should compare this fact with the example in the para-
graph above: Not only can one find infinitely many dis-
joint squares with sides of length 1 in R?, but one needs
infinitely many sets of the form @ + [0,1] to cover the
group (R?,+).

One context in which the two relations agree is that of
stable theories. This was made explicit in Onshuus (2006)
and can even be stated at a local level (as stated in Fact
3.2). And the fact that the two notions agree in stable
theories is a very strong property of this class of theo-
ries, as is proved in the first author’s Ph.D. thesis (Ealy
(2004)) and also in Adler (2009): in any theory any notion
of independence (in the sense of Kim and Pillay (1997),
Definition 4.1) is stronger than p-forking and weaker than
forking. Thus, if p-forking and forking coincide then they
define the only possible abstract independence relation in
the theory.

In this paper we continue the study of forking and p-
forking. In particular, we will focus on the role of sta-
ble formulas. In many theories with a well-behaved in-
dependence relation, one finds that dependence is often
witnessed by stable formulas. Most famously, one has
the Stable Forking Conjecture for simple theories®, but
this phenomena extends beyond simple theories. For in-
stance, in a real closed field, o-minimal dependence (i.e.
p-forking) is always witnessed by a stable formula.

One approach would be simply to define an indepen-
dence relation using, in some sense, only stable formulas.
However, here a few obstacles immediately present them-
selves. Whether or not a formula is stable depends not
only on the formula itself, but also on how the variables
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are divided into parameter and object variables. For this
(and other reasons), the set of stable formulas changes as
the language is expanded by constants. When model the-
orists say a set is “definable”, quite often “definable with
parameters” is the default meaning, and one says “empty
set definable” if one means definable without parameters.

In this paper, we explore stable forking understanding the
precise use of parameters. We assume the reader is famil-
iar with the basic model theoretical terms. We will use
upper case letters A, B, C to denote sets, while lower case
letters a,b,c will denote tuples of elements. Variables x
and y will be used as tuples of variables.

1.1. Results

Definition 1.1. Let T be a theory with language £, and
let M be a model of T. For B C M, denote by Lp the
language £ expanded by constant symbols for elements
of B.

e A formula ¢(x,y) in £(B) is stable if there are
no B-indiscernible w-sequences (a;) and (c;) such
that M [= ¢(a;, ¢j) if and only if i < j.

e Given formula ¢(x,y) in £(B), some parameter
¢ € M and some A, we say that ¢(x, c¢) divides over
A if there is a (A U B)-indiscernible sequence (c;)
with ¢ = ¢ such that

A e(xci)
is inconsistent with Th(M).

Definition 1.2. Denote by Lp the language £ expanded
by constant symbols for elements of B. If the following
two conditions hold

(1) there is B such that ¢(x,c) is a stable L formula
(2) ¢(x,c) divides over A (again, in Lp)

then we say ¢(x, ¢) stably divides with parameters (w.p.) over
A.

A type tp(a/C) with A C C stably divides (w.p.) over A if
it contains a formula ¢(x,c) which stably divides (w.p.)
over A.

If tp(a/C) implies a disjunction of formulas, each of
which stably divides (w.p.) over A we say tp(a/C) stably
forks (w.p.) over A. We write a | *" C to mean tp(a/AC)
does not stably fork (w.p.) over A.

*Whether or not an instance of forking in simple theories can always be witnessed by a stable formula is probably the most
important open question in simple theories. We refer to Kim (2001) and Kim and Pillay (2001) for a good review of the subject, and
Palacin and Wagner (2013) for the most recent advances in the conjecture.
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The following is the main result of this paper.

Theorem 3.3 Suppose A C C. Then tp(a/C) p-forks over
A C Cifand only if tp(a/C) stably forks (w.p) over A. Fur-
thermore, if tp(a/C) stably divides (w.p.) over A, the param-
eters witnessing this, B, may always be taken A C B C C.

The right to left direction of the theorem was proved in
the thesis of the second author (Onshuus (2002)) and is
explicitly quoted in Fact 3.2. The left to right direction is
proved in this paper.

Theorem 3.3 has the following weak version of the Stable
Forking Conjecture as a corollary, as p-forking and fork-
ing coincide in simple theories that eliminate hyperimag-
inaries. (This latter class, one recalls, is known to include
large classes of simple theories, such as supersimple the-
ories, and conjecturally includes all simple theories.)

Corollary 3.4 In a simple theory that eliminates hyperimag-
inaries, if tp(a/C) forks over A C C, then it stably forks
(w.p.) over A. Furthermore, if tp(a/C) stably divides (w.p.)
over A, the parameters witnessing this may always be taken
ACBCC.

In addition, we explore what our methods can say about
stable forking without additional parameters. To this end
we make the following definition.

Definition 1.3. Now we will give a new notion of “sta-
ble dividing” which we will call “st-dividing”. A formula
¢(x,¢) st-divides over A if there is a tuple b € C, a definable
function (without parameters) f(x,y), and a stable 6(w, y)
such that

(1) ¢(x,c) implies 6(f(x,b),¢)
(2) 6(w,c) divides over Ab.

Given a type tp(a/C) with A C C st-divides over A if
it contains a formula which st-divides over A. Finally, if
tp(a/C) implies a disjunction of formulas which st-divide
over A, then we will say that tp(a/C) st-forks over A.

\I/qu write a J/‘Z C to mean tp(a/ AC) does not st-fork over

We have the following theorem and corresponding corol-
lary:

Theorem 3.6 Suppose A C C. Then tp(a/C) p-forks over
A C Cifand only if tp(a/C) st-forks over A.

p-Forking and Stable Forking

Corollary 3.7 In a simple theory that eliminates hyperimagi-
naries, if tp(a/C) forks over A C C, then it st-forks over A.

Finally, we observe that the method of proof for Theorems
3.3 and 3.6 also yields new information about p-dividing.
Recall that a formula ¢(x, ¢) p-divides over A when there
is a tuple b so that ¢(x, ¢) strongly divides over Ab.

Corollary 4.2 If a formula ¢(x,c) p-divides over A then the
tuple b so that ¢(x,c) strongly divides over Ab may be taken
from dcl(Ac).

2. *-independence

In this section, we will work with *-independence, where
the * is to be understood as a wildcard, later to replaced
with “stable (w.p.)” or “st” or p. First, we will prove a
general statement about independence relations (under-
stood just as a ternary relation with additional proper-
ties we will explicitly mention), and then we will describe
a method of obtaining independence relations satisfying
the properties we desire, before turning to particular in-
dependence relations in subsequent sections.

Recall the definition of p-forking.

Definition 2.1. Let ¢(x, c) be any formula. We say ¢(x, c)
strongly divides over A if c is not algebraic over A and there
is an A-formula 6(y) satisfied by c such that

{o(x,c') - = 0(y)}

is k-inconsistent for some k. We say ¢(x, c) p-divides over
A if it strongly divides over Ab for some b. Finally, ¢(x,c)
p-forks over A if it implies a disjunction of formulas, each
of which p-divides over A.

Orne says that tp(a/C) strongly divides over A if it con-
tains a formula that does so. Note that this is the same as
saying there is ¢ € C such that ¢ € acl(Aa) \ acl(A).

We assume the reader is familiar with the properties of
monotonicity and extension, but the reader may also refer
to Lemmas 2.6 and 2.7, respectively, for the definitions.

Definition 2.2. An independence relation for a theory is a
automorphism invariant ternary relation on small (com-
pared to the saturation) subsets of a monster model of
that theory.

Note that this is a far weaker definition than a notion of
independence in the sense of Kim and Pillay (1997) men-
tioned in the introduction.
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Definition 2.3. If a j/z C whenever there is ¢ € C with
c € acl(aA) \ acl(A) then we say | * is antireflexive.

Theorem 2.4. Let *-independence be an independence relation.
Then, for any element a and B C C the following hold.

(1) If tp(a/C) does not *-fork over B and *-independence
is antireflexive, then tp(a/C) does not strongly divide
over B.

(2) If tp(a/C) does not *-fork over B and *-independence
satisfies monotonicity, extension, and anti-reflexivity,
then tp(a/C) does not p-fork over B.

In particular, if a | ’, b then a J/{’q b.

Proof. (1). Since strong dividing gives us ¢ € C with
c € acl(aA) \ acl(A), this is simply anti-reflexivity.

(2). First we show that tp(a/C) does not p-divide over
B. Assume otherwise, so that by definition there is some
¢ € C, aformula ¢(x,y) such that ¢(a,c) holds, and some
tuple d such that ¢(x, ¢) strongly divides over Bd.

Since uJ/; ¢, by extension there is some 4’ such that
a' | jed and such that o’ satisfies the same type as a
over Bc (so in particular ¢(a’,¢) holds). Thus tp(a’/Bed)
strongly divides over Bd, and by (1) this implies that
a’ [ 3, cd, and by monotonicity, a’ f ; cd, a contradiction.

That *-independence implies p-independence now fol-
lows immediately from extension.

O

Now we will describe how to build from a basic notion of
independence, an independence relation satisfying mono-
tonicity and extension. We will call our basic notion *-
strong-dividing, in analogy to the definition of p-forking.
Then we will modify it to get *-dividing which will satisfy
monotonicity, and finally go from *-dividing to *-forking,
in the traditional fashion, to ensure extension.

Suppose we have a notion of what it means for a formula
¢(x,c) *strong dividing over a set A, such that when-
ever ¢(x,c) *-strong divides over A there is a finite tuple
a € A such that ¢(x,c) *-strong divides over Ag for any
aC Ay CA.

Definition 2.5. We will say that a formula ¢(x,c) *-
divides over A if there are tuples ¢, b € C, an A-definable
function f(x,y) and a formula 6(z, ¢) such that

¢(x,¢c) =0 (f (x,b),c)

and 6(z,¢) *-strong-divides over Ab.
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We will say that tp(a/C) *-divides over A if it has a for-
mula which *-divides over A.

We will say that a type tp(a/C) *-forks over A, with
A C C, if it implies a finite disjunction of formulas, each
of which *-divides over A. We will in general say that
a J/Z B if tp(a/ A U B) does not *-fork over A.

The following then holds by construction

Lemma 2.6 (Monotonicity). If tp(a/C) is a type and A C
B C C, then tp(a/C) *-divides over A whenever tp(a/C)
*-divides over B or when tp(a/B) *-divides over A. The corre-
sponding statement for *-forking holds as well.

Proof. Let A C B C C. If tp(a/B) *-divides over A then it
implies a formula which *-divides over A, and so does
tp(a/C). Likewise, if tp(a/B) *-forks over A, so does
tp(a/C).

Now, if tp(a/C) *-divides over B then by definition there
are tuples d,¢ and a formula 6 (f (x,d),¢) where f(x,y)
is a B-definable function, and 6(z, c) *-strong divides over
Bd.

By hypothesis on *-strong dividing, there is a tuple by
such that (z,c) *-strong divides over Abgd. Let by be a
tuple in B such that f(x,y) = fa(x,y,b;) where f4 is A-
definable. Let k = by by d. Then:

e We can write 0 (f (x,d),¢) as 0 (f (x,k),¢), and
e 0 (f (x,k),c) *-strong-divides over Ak.

Since tp(a/C) = 0 (f (x,k),¢), we have that tp(a/C) *
divides over A, as required.

Suppose that tp(a/C) *-forks over B, i.e. thereisan E D C
such that each extension of tp(a/C) to E *-divides over B.
By monotonicity of *-dividing, each such extension also
*-divides over A. Thus tp(a/C) *-forks over A. O

Lemma 2.7 (Extension). If A C B C C and p(x) is a type
with parameters in B which does not *-forks over A, then we can
extend p(x) to a type pc(x) with parameters in C and which
does not *-fork over A.

Proof. This is word by word the same proof as in the
dividing-forking case, see for example Theorem 1.4 in
Chapter III of Shelah (1990). O

In the following sections, we will be concerned with *-
dependence derived from two *-strong-dividing notions.
The first, where *-strong-dividing is stable dividing, will
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give rise to st-forking. The second notion is where we
take *-strong dividing is strong dividing (see Onshuus
(2006)); we will prove that this latter notion is equivalent
to p-forking, which should not be quite surprising since
the definition makes the notion very close to p-forking,
but we will be able to understand properties for p-forking
which were previously unknown.

Up until now, we were emphasizing what the *-
construction gave us in terms of monotonicity. However,
when *-strong-dividing is stable dividing, it already has
monotonicity, and the additional information achieved
by the *-construction comes in terms of anti-reflexivity.
Specifically we have the following complement to Theo-
rem 2.4.

We start with the following definition.

Definition 2.8. We will say that a *-strong-dividing notion
respects algebraicity if 0(x, b) *-strong-divides over C for
any any b ¢ acl(C) whenever 6(x,y) is a formula without
parameters such that

VXYL oYk ( A 9(xr}/i)> = Vo o=y
1<i<k+1 1<i<j<k+1

for some k € IN.

Theorem 2.9. Any *-independence notion constructed (as de-
scribed above) from a *-strong-dividing notion which respects
algebraicity satisfies anti-reflexivity.

So if a *-strong-dividing notion respects algebraicity, then the
related *-independence notion satisfies monotonicity, extension
and anti-reflexivity and therefore implies p-independence.

Proof. Assume otherwise, so that a J/; cbutc € acl(aB) \
acl(B). Let ¢(a, b, c) witness such algebraicity with b € B,
and let ¢’(xy, z) be the formula (over M®) which groups
the first and second variables and the third one as imagi-
naries (instead of tuples). Since *-strong-dividing respects
algebraicity we have that ¢'(xy,c) must *-strong-divide
over B, but by definition this implies that tp(a/Bc) *-
divides over B, as required.

The rest follows from Theorem 2.4. O

3. Stable Forking

First we will prove Theorem 3.3. Although the result
might not seem as strong as the other statements we
prove, the proof is short and illustrates why the methods

p-Forking and Stable Forking

in this paper do not yield the full Stable Forking Conjec-
ture.

Lemma 3.1. Let a be an element and B C C. Then ifa | 7 C
then a Jj; C.

Proof. Stable dividing (w.p.) clearly satisfies monotonic-
ity, and by the proof of Lemma 2.6, we see that stable fork-
ing (w.p.) satisfies monotonicity as well, and of course, it
satisfies extension. Thus it remains only to show that it
satisfies anti-reflexivity. Suppose that ¢ € acl(Ba) \ acl(B),
witnessed by «(c, ba) where b is a tuple in B and such that
a(z,b'a’) has only finitely many realizations. The formula
a(z,yx) is of course a stable formula, but a(zy, x) need
not be. But adding the constant b to the language means
that algebraicity is witnessed by the a(c,a), and «a(c, x)
witnesses anti-reflexivity of stable forking (w.p.). O

The converse of Lemma 3.1 follows from Theorem 5.1.1 in
Onshuus (2006):

Fact 3.2. Let T be any theory, M be any model of T and
A = acl(A) be any subset of M, and a and b be tuples in
M and let $(x,y) be a stable formula without parameters.
Suppose that p(x) is a type over Ab containing a ¢-formula
(boolean combination of y-instances of ¢) which forks over A.
Then p(x) p-forks over A.

Theorem 3.3. tp(a/C) p-forks over A C C if and only if
tp(a/C) stably forks (w.p) over A. Furthermore, if tp(a/C)
stably divides (w.p.) over A, the parameters witnessing this, B,
may always be taken A C B C C.

Proof. Left to right is Lemma 3.1. Right to left is Fact 3.2
together with the observation that, unlike stable forking,
removing parameters from the language can only increase
the amount of p-forking. The restriction that A C B C C
may be obtained by adding this to the definition of stable
dividing (w.p.) and noting that monotonicity, extension,
and antireflexivity still hold. O

Since by Ealy (2004) in any simple theory which elim-
inates hyperimaginaries forking and p-forking coincide,
this provides a proof of a weak Stable Forking Conjecture
in simple theories which eliminate hyperimaginaries.

Corollary 3.4. In a simple theory that eliminates hyperimag-
inaries, if tp(a/C) forks over A C C, then it stably forks
(w.p.) over A. Furthermore, if tp(a/C) stably divides (w.p.)
over A, the parameters witnessing this may always be taken
ACBCC.

We will now prove that st-independence is equivalent to
p-forking. One direction follows easily from Theorem 2.9.
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Lemma 3.5. Let a be an element and B C C. Then if a ‘;t C
then a J/lé C.

Proof. Note that st-forking is just the independence rela-
tion obtained by letting *-strong dividing be dividing wit-
nessed by a stable formula. Thus, by Theorem 2.9, we
just need to show that stable dividing respects algebraic-
ity. But this is clear since any formula 0(x,y) without
parameters satisfying

walw-wym( A 9<xi,y>):» Vo ow=y,
1<i<k+1 1<i<j<k+1

is a stable formula, and 6(x, ¢) divides (in the usual sense)
over A whenever ¢ & acl(A). O

Theorem 3.6. Let T be any theory, M be any model of T and
A = acl(A) be any subset of M, and a and b be tuples in M.
Then

b *
a|bsa b
A A

Corollary 3.7. In a simple theory that eliminates hyperimagi-
naries, if tp(a/C) forks over A C C, then it st-forks over A.

Proof. One direction is Lemma 3.5. For the converse, we
will first prove the following lemma.

Lemma 3.8. Suppose that tp(a/ Ab) st-divides over A. Then
afbb
ne

Proof. By definition, there is a stable formula 6(x,y) and
some by € dcl(Ab) and some definable function f(x, w)
such that
tp (a/ Ab) [= 6 (f (x,bo) , b)

and 0(x,b) divides over Aby. By Fact 3.2 we have
f(a,by) X/ibo b which implies a J//l;b by monotonicity
and partial left transitivity, (Lemmas 2.1.3 and 2.1.6 in On-
shuus (2006)). O

The rest is pretty standard. If a LZ b then for some fi-
nite tuple e we have that every extension of tp(a/Ab) to
Abe st-divides over A. By the lemma, this implies that
every extension from tp(a/Ab) to Abe p-forks over A, but
p-independence always satisfies extension, so a J//lz b as
required. O

Observation: There is a caveat when going from stable
dividing to st-dividing, which is particularly problematic
when looking for canonical bases, as can be seen in Pil-
lay’s example of an o-minimal theory without canonical
bases, which we will now describe:

688

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40(157):683-689, octubre-diciembre de 2016

doi: http://dx.doi.org/10.18257/raccefyn.351

Let R be a non standard real closed field, and let a be
a transcendental real number. Let R, be the reduct of
R where we preserve only addition and the restriction
of multiplication by a to the open unit interval. Now,
let b, c be infinite (meaning larger than any integer num-
ber) numbers in R, such that (b —c) € (0,1), and let
d = a(b—c)+a. Then tp(a/bcd) has no canonical bases.

To understand what happens with st-forking and
why this cannot help us with canonical bases, let
p(x,y,z,w) = w = a(y —z)+ x, and notice that
¢(a,b,c,d) witnesses that ac JL% bd.

So tp(ac/bd) = ¢(x,b,z,d), the formula ¢'(xyz, w) :=
¢(x,y,z;w) is stable and ¢'(xyz,d) divides over bc, so
tp(a/bed) st-forks over @. But the canonical parameter
of ¢'(xyz,d) is d itself which is too small to be definable
from what the canonical base of tp(a/bcd) should be.

4. On p-forking

Combining the definitions of strong dividing and p-
dividing given in the previous section (together with com-
pactness), we have that ¢(x,c) p-divides over A if for
some b we have ¢ ¢ acl(Ab) and

{(P(X, C/) }C’\=tp(c/Ab)

is k-inconsistent for some k.

A long standing question was whether we could say
something about where to find the parameter b which al-
lowed us to go from p-dividing to strong dividing. We
can now answer this.

Start with the definition of strong dividing, and since it
is clear that strong dividing respects algebraicity, if we
apply the *-construction to strong dividing we get, by
Theorem 2.9, an independence notion which implies p-
independence.

Conversely, it is also clear that the dividing notion we get
implies p-dividing: the *-definition of “dividing” is more
restrictive since it requires the extra parameter to come
from the parameter set of the type.

By analyzing precisely what is going on, we get the fol-
lowing.

Theorem 4.1. If we redefine p-forking by defining a formula
¢(x,¢) p-divides over A if there is some b € dcl(Ac) such that
¢(x, c) strongly divides over Ab, then the corresponding notion
of p-independence is equivalent to p-forking.
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Proof. 1f we take the dividing notion corresponding to
strong dividing (according to Definition 2.5), then we have
that a formula ¢(x,c) *-divides over A if there are tuples
¢,b € dcl(Ac), an A-definable function f(x,y) and a for-
mula 0(z, ¢) such that

¢(x,¢c) =0 (f (x,b),c)

and 0(z,¢) strong-divides over Ab.

By definition ¢ ¢ acl(Ab) and there is some Ab-definable
7t(y) such that 77(c) holds and

{Q(Z’ El)h:rc(c’)

is k-inconsistent.

But of course this implies that both
{0(f (x0),8) e

and
{(P (x’ E,) }|=7r(c’)

are k-inconsistent. O

It follows that if a formula *-divides then it p-divides and
we can find the elements that makes it strongly divide from the
definable closure of the parameter set which is a big improve-
ment in our understanding of p-forking. This proves the
following corollary.

Corollary 4.2. If a formula ¢(x,c) p-divides over A then the
tuple b so that ¢(x,c) strongly divides over Ab may be taken
from dcl(Ac).

Observation: It is important to notice that our result
is just for p-dividing and not for p-forking. For exam-
ple, take the projective plane with sorts for points and
lines and the incidence relation € between the sort (where
p € Lif p is a point in the line L).

Let p and L be a point and a line with p € L. Then clearly,
p X/g L (the formula x € L p-forks over @). If q us any
other point in L, then this p-forking can be witnessed b

xeL=(xeLAx#q)Vx=gqg

and both this formulas p-divide over @. The formula
x € L Ax # g strongly divides, as indicated by Theorem
4.1, over q.

p-Forking and Stable Forking

We do not believe, however, that the formula x € L im-
plies formulas which strongly divide over some subset of
dcl(L). A p-forking version of Theorem 4.1, is that in any
theory and given any 4, a model M and a subset A C M
then a j/]i M can always be witnessed by a disjunction
of formulas over with parameters in M each of which p-
divides over M. This is true, but it follows mainly from
the fact that all the instances in the definition of p-forking
can be found in a w-saturated model M. One can then
drop the w-saturation assumption using Theorem 4.1.
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