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ABSTRACT

I. A. Selezneva, Yu. L. Ratis, E. Hernández, J. Pérez-Quiles and P. Fernández de Córdoba: A code to 
calculate high order Legendre polynomials and functions. Rev. Acad. Colomb. Cienc. 37 (145): 541-544, 2013. 
ISSN 0370-3908.

In this paper we present, with a pedagogical aim, a method to calculate the associated Legendre functions and 
polynomials. The method uses stable recurrence relations involving these functions. 
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RESUMEN

En este trabajo se presenta, con una finalidad pedagógica, un método para evaluar funciones y polinomios de 
Legendre. El método utiliza relaciones de recurrencia estables que involucran a estas funciones.

Palabras clave: funciones asociadas de Legendre, polinomios de Legendre, relaciones de recurrencia y esta-
bilidad.
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MATEMÁTICAS

Introduction

Spherical harmonic functions and associated functions of 
Legendre of the first and second kind (  
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Solution of this equation are analytical in  ,   and  . Usually   is called the degree and   the 
order. Solutions of this equation are polynomials for   integer and even, and   integer such that 
     . In the case of   odd they are not polynomials, although the whole set of solutions 
are known as Legendre Polynomials. If    , then the solution are the well-known Legendre 
polynomials. Usually, when one uses these functions in applied problems, it is necessary to 
compute them for all  ,   in a wide range, which is computationally expensive.  
In the case of Legendre’s Polynomials, there exists an explicit form of the polynomials      , 
given by the formula of Rodrigues,  
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Expanding this formula, one obtains,  
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where[   ] is the integer part of the number    .  
Whereas for small values of  , the computation of Legendre’s polynomials using (3) is trivial, 
when      several accuracy and stability problems arise. One should be tempted to use the 
recurrence relation,  
 

 
[1,2] are related to most of the special functions of mathema-
tical physics. For example, they appear in the computation 
of atomic electron configurations [4], in the representation of 
electromagnetic fields in materials and at surfaces and inter-
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faces [5], and in the characterization of some forms of elec-
tromagnetic radiation [6]. Apart from these works, we refer 
to the reader to [11,12,13] and references therein for other 
applications and the recent discoveries about Legendre’s 
functions. They are solutions of Legendre’s equat. 
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Solution of this equation are analytical in z, n  and m. Usua-
lly n is called the degree and m the order. Solutions of this 
equation are polynomials for n integer and even, and m in-
teger such that 0 ≤ m ≤ n. In the case of n odd they are not 
polynomials, although the whole set of solutions are known 
as Legendre Polynomials. If m = 0, then the solution are the 
well-known Legendre polynomials. Usually, when one uses 
these functions in applied problems, it is necessary to com-
pute them for all n, m  in a wide range, which is computatio-
nally expensive. 

In the case of Legendre’s Polynomials, there exists an ex-
plicit form of the polynomials P

n
(z), given by the formula of 

Rodrigues, 
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Expanding this formula, one obtains, 

(3)

where [n/2] is the integer part of the number n/2. 

Whereas for small values of n, the computation of Legendre’s 
polynomials using (3) is trivial, when N » 1 several accuracy 
and stability problems arise. One should be tempted to use 
the recurrence relation, 

(4)

since P
o
(z) = 1 and P

1
(z) = z. However, the ascending recur-

sion formula (4) is also unstable. This is related to the fact 
that in the interval (-1,1) the norm of the polynomial ||P

n
(z)|| 

diminishes as 1/√(n) [6]. In other words, the use of a recur-
sion that produces a monotonically descending sequence in 
norm, leads to a rapid accumulation of round-off errors. 

In this paper we present a suitable algorithm to compute the 
associated Legendre functions P

n
(m)(z), which includes as es-

pecial case the Legendre polynomials P
n
(z). In fact, P

n
(z) = 

P
n

(m)(z) for m = 0 and n integer, since [1] 

(5)

The formula (4) is computationally stable for the regular 
solutions P

n
(z) of Legendre’s equation (1) using backward 

recursion. In this case, as the norm of polynomials P
n
(z) and 

P
n-1

(z) is smaller than the norm of P
n-2

(z), there is not round-
error accumulations. As there are not cancellations, the fini-
teness of the mantissa does not influence in the error of each 
step in the recursion. 

Of course, if backward recursion has to be applied by using 
(4), one needs initial values P

N
(z) and P

N-1
(z). The evaluation 

of these values is very expensive for great values of N using 
formula (3). Furthermore, the computational implementation 
of (3) generates additional problems, related to the round-off 
error and also to accumulation of error in the subtraction of 
closed values. 

The computation of the associated Legendre functions P
n
(m)

(z) in physical and/or engineering problems results as fre-
quent as those of Legendre polynomials P

n
(z), so it is very 

useful that the algorithm computes both the polynomials and 
functions. Following the same strategy of  [7,9,10] it is pos-
sible to find the functions P

n
(m)(z) and the polynomials P

n
(z) 

in an unified algorithm. 

Solutions of equation (1) [8] are subordinated to the recur-
sion relations 

(6)

and

(7)

where initial values are given by 

(8)

and

(9)

However, recursion (7) is computationally unstable bac-
kwards. The nature of this instability is the same as in the 
forward recursion (3) for Legendre’s polynomials P

n
(z). This 

is a consequence of the rapid accumulation of error on the 
computed value Y

n
 from the standard trinomial recursion re-

lation 

(10)

The associated function of Legendre P
n

(m)(z) is analytic on m, 
-n ≤ m ≤ n, and for a fixed value of n, the norm ||P

n
(m)(z)|| 

monotonically increases with m. Connection between the as-
sociated functions of Legendre for the negative and positive 
values m it is given by the relationship, [1] 

(11)

From the formulas (8), (9), (11) it follows that 
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Using (11), (12) and (13) it is possible to find the initial va-
lues P

n
(-n)(z), P

n
(1-n)(z), which permits to compute Legendre  

P
n

(m)(z) for all |m| ≤ n on the basis of the steady ascending 
recursion (7). 

As a particular case, this formula is also useful to compute   
P on(z) which can be readily used to compute P oo(z) backwards 
in a very fast and accurate way. Moreover, the error of the 
algorithm can be estimated by ε = | Po

appr(z) - 1| and ε1 =                
| P1

appr(z) - z|. In Figure 1a and 1b we plot the errors for initial 
n = 100 and n = 30. Both errors are in the range 10-14, i.e. clo-
se to the round-off error. As we can see from Fig. 2, typical 
time for a run is in the range of seconds for 10.000 points. 

A last question: as we want to present this work with a 
methodological point of view, we only sketch the main pro-
blems of Legendre recurrence formulas. We refer to [11] or 
[14] for more formal comparisons. 

Codes developed

The subroutine flgndr computes accurately the values of 
Legendre’s function for any z ∈ (-1,1) and all m integer in -n 
≤ m ≤ n. The maximum possible n is 120. This limitation 
is due to the small value of P-120, which cannot be accurately 
described in double precision. 

In this subroutine, z is a column vector containing the points 
where Legendre’s functions are going to be calculated, and n 
is the degree. Output is a matrix, pnm, of size [length(z), 2n 
+ 1] containing the values of P

n
(m) for -n ≤ m ≤ n. 

function pnm = flgndr(z,n)
nz  = length(z);
pnm = zeros(nz,n+1);
  
fac = prod(2:n);
sqz2   = sqrt((1.0-z.*z));
hsqz2  = 0.5*sqz2;
ihsqz2 = z./hsqz2;

Figure 1. Error on the computation of Po(z) (circles) and P1(z) (asterisks). The backward recursion starts at n = 100 (left) and n = 30 (right).

Figure 2. Computation time depending on the degree for 10000 
points

120
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if(n==0)
   pnm(:,1) = 1.0;
   return
end
if(n==1)
   pnm(:,1) = -0.5*sqz2;
   pnm(:,2) = z;
   pnm(:,3) = sqz2;
   return
end
  
pnm(:,1) = (1-2*abs(n-2*floor(n/2)))
*hsqz2.^n/fac;
pnm(:,2) = -pnm(:,1)*n.*ihsqz2;
for mr=1:2*n-1
   pnm(:,mr+2)=(mr-n).*ihsqz2.
*pnm(:,mr+1)-(2*n-mr+1)*mr*pnm(:,mr);
end

end

Using the previous routine, it is possible to compute P
n
(z) 

and Pn-1(z), which allow us to compute Legendre polyno-
mials. The inputs are the same that in the flgndr function, but 
the output contains the values for all the orders from 0 until 
n. This n is limited in double precision to 120 approximately.

function pn=plgndr(z,n)

pn=zeros(length(z),n+1);

% code

if(n==0)
   pn(:,1)=1;
   return

end

pnm = flgndr(z,n);
pn(:,n+1)=pnm(:,n+1);

pnm = flgndr(z,n-1);
pn(:,n)=pnm(:,n);

for nc=n-1:-1:1
    pn(:,nc)=((2*nc+1)*z.*pn(:,nc+1)-
    nc+1)*pn(:,nc+2))/nc ;

end

Conclusion

In this work we have developed and described (with pe-
dagogical aim) an algorithm which computes Legendre’s 
functions and polynomials. Testing shows how this method 

can compute this function with a maximum error of 1e-14. 
The main limitation is due to the small value of  P

n
(-n), which 

can be by-passed using 16 bytes precision. A generaliza-
tion of this method to another orthogonal polynomials and 
functions are currently in progress. 
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