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Abstract

We propose a winsorized adaptive rank test for the location alternative for samples from asymmetric distributions 
coming from the Generalized Lambda Family. We give a method to calculate the exact conditional distribution, 
analytic expressions for the asymptotic distribution and for the first two moments of the test statistic. By means of 
a Monte Carlo study, we show that for various selections of the winsorization parameter, our test is more powerful 
than the sign test, and than the original test for appropriate choices of the winsorization parameter, from which the 
proposed test is adapted. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat.
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Una prueba de rangos adaptativa winsorizada para localización en muestras de distribuciones asimétricas

Resumen

Se propone una prueba de rangos adaptativa winsorizada para la alternativa de localización en distribuciones 
asimétricas que provienen de la Familia Lambda Generalizada. Se da un método para calcular la distribución 
exacta y expresiones analíticas para la distribución asintótica, y los dos primeros momentos de la estadística 
de prueba. Por medio de un estudio de Monte Carlo, se muestran que para varias selecciones de parámetros 
de winsorización la prueba propuesta es más potente que la prueba del signo y que la prueba original para 
selecciones apropiadas del parámetro de winsorización, de la cual la prueba propuesta fue adaptada. © 2016. 
Acad. Colomb. Cienc. Ex. Fis. Nat.
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Introduction
Let X1, ..., XN be a random sample from a continuous 
distribution F(x - θ) such that F(0) = 1/2 uniquely. Without 
loss of generality, consider the test problem:
  H0: θ = 0 vs. H1: θ > 0,   (1.1)
or versus the alternatives θ < 0 o θ ≠ 0. Under such general 
conditions on, the sign test is a locally most powerful test 
for H0 against H1 when the sample distribution is double 
exponential (Hettmansperger 1984, page 9-12). When 
the symmetry of F around zero is justifiable, the Wilcoxon 
signed rank test is preferred, especially when the sampled 
distribution is logistic (Hajek 1999, page 119). Moreover, 
more efficient tests can be obtained by including informa-
tion about the tail weight of the sampled distribution. This 
class of tests is called winsorized signed rank tests, and 
they are preferred instead of the Wilcoxon test, choosing a 
small winsorization parameter when the sampled distri-
bution is close to the normal distribution, and a larger 
winsorization parameter when it is closer to the double 
exponential (Hettmansperger 1984, page 92-93). Baklizi 
2005, proposed the use of the Wilcoxon scores modified 
by an exponent which depends on the asymmetry level of 

the sampled distribution to build a test for location under 
asymmetry, and showed by means of a simulation study 
that his test was more powerful than the sign test, than the 
Wilcoxon test, than the Lemmer 1987 and Lemmer 1993 
tests, and than a bootstrap procedure test for samples coming 
from eight cases of the lognormal distribution.

We mix Baklizi’s modification of the Wilcoxon scores 
with Tukey’s winsorization technique to produce a new 
winsorized adaptive rank test, which becomes more powerful 
than the Baklizi test for samples coming from distributions 
with moderate levels of asymmetry obtained from the 
Generalized Lambda Distribution (GLD) (See appendix, 
http://www.raccefyn.co/index.php/raccefyn/article/download 
SuppFile/333/1647).
The Proposed Test Statistic and some Properties.
Let │X│(1)  ≤ ... ≤ │X│(N) be the sequence of ordered absolute 
values of the sample; define Ri, the rank of │Xi│ = │X│(Ri)

.  
Let s(Xi) be the indicator variables:
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                                             (2.1)

A general scores statistic is defined by (Hettmansperger 
1984):
                        

where ϕ (u), 0 < u <1, is a nonnegative and nondecreasing 
function such that 0 < ∫0

1 ϕ2 (u) du < ∞.
Some known special cases of V  are: the sign test (S -test) 

statistic with ϕ (u) = 1, the Winsorized Wilcoxon signed rank 
test (W -test) statistic with ϕ (u) = u, the winsorized signed 
rank test (W W -test) statistic with ϕ (u) = min{u, 1 - γ}, 0 < 
γ < 1,  where γ is the proportion of winsorized observations.

A fourth special case of V  is the Baklizi test (B -test) 
statistic which uses the following conditional (on p) score 
function, ϕ (u) = up, where p is the p-value of a test for the 
hypothesis of symmetry on F, F(x) = 1 - F(-x), for all 
x against asymmetric alternatives, proposed in Randles, 
Fligner, Policello and Wolfe 1980, and is an indicator of the 
asymmetry of F. Note that when p approaches zero, F shows 
evidence of asymmetry. Explicitly, the Baklizi test statistic 
can be written as follows:

   

The fifth special case of V  is the proposed test (BW -test) 
statistic, which uses the conditional (on p) score function: 
                                ϕ (u) = min{u (p), 1 - γ}                         (2.2)
where 0 < γ < 1 corresponds to the proportion of winsorized 
observations and (p) plays a similar role as p in the Baklizi 
test statistic, that is to decrease the contribution to the 
statistic of large ranks (corresponding to large obser-vations 
in the tail of asymmetric distributions).

The proposed winsorized test statistics are:
  (2.3)

where BW 1 will be used for (p) = p and BW 2 for g(p) = 
. When a property is common for the two statistics we 

will write BW  without subscript.
Using Baklizi 2005 notation, let P be the random variable 

denoting the p-value of the Randles test for symmetry with 
probability density function f (p). The proposed BW -test 
rejects H0 in favor of H1 when BW  ≥ k where k is determined 
such that P (BW  ≥ k│p) = α. The overall size of the test is 
α because for a fixed γ (Baklizi, 2005):

P (BW  ≥ k) = ∫0
1  P (BW  ≥ k │p) f (p) dp = α.

The exact conditional distribution of BW  under H0 can 
be obtained by enumeration as follows: Let Z be a 2N × N 
matrix containing all possible configurations of ones and 
zeros assignable to the sample values according to (2.1), 
obtained by the Cartesian product {0,1}N such that each row 
corresponds to a different configuration. 

The distribution of the vector (S(Xi), ..., S(XN)) is uniform 
on Z under H0, because X1, ..., XN are independent random 

variables from a continuous distribution with median zero. 
For  as in (2.2), let
                       ,
be a vector of scores, and denote by z = (z1, ..., zN) a row 
vector representing a row of Z. The values of BW  can 
be obtained as function of z by BW  (z) = zR and so the 
distribution of BW  can be calculated as:

      
The proposed test statistic has the following properties:
a) ϕ (u) = min{u (p), 1 - γ} ≤ 1 - γ; therefore, 

∫0
1  ϕ (u) du < 1 - γ and 0 < ∫0

1  ϕ2 (u) du < 1.
b) From the theory for linear rank statistics the con-

ditional mean and variance, exact and asymptotic, of BW  
for a given p under H0 are (all results in b) and c) are direct 
application of Theorem 2.8.1 from Hettmansperger 1984, 
page 88 for ϕ (u) as defined in a)):

  (2.4)

           ,    (2.5)

  (2.6)

       ,   (2.7)

(Details in Appendix A.1, http://www.raccefyn.co/index.
php/raccefyn/article/downloadSuppFile/333/1647.)

c) It also holds that

  
          ,   (2.8)  

converges to a standard normal distribution.
Monte Carlo Study

To study the empirical power of the proposed test, we 
selected five cases of the GLD with a moderate level of 
asymmetry, and to calibrate the size of the compared tests we 
selected the normal distribution approximated by the GLD. 
In Table 1 are shown the parameters of these distributions 

Table 1. Cases of the GLD

λ1 λ2 λ3 λ4 α3 α4

Case 1 0  0.197454 0.134915 0.134915 0 3

Case 2 -0.116734 -0.351663 -0.13 -0.16 0.8 11.4

Case 3 0 -1 -0.1 -0.18 2.0 21.2

Case 4  3.586508 0.04306 0.025213 0.094029 0.9   4.2

Case 5 0 -1 -0.0075 -0.03 1.5   7.5

Case 6 0  1 0.00007 0.1 1.5   5.8

(p)
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and the parameters of skewness α3 and kurtosis α4, which 
show that the sampled distributions are right skewed and 
have greater kurtosis than the normal distribution. The 
corresponding densities are in Figures 1, 2, 3, 4, 5 and 6.

We have compared the S -test, the B -test, the BW 1-test 
and BW 2-test, and we have included the W -test to calibrate 
the compared tests under the assumption of symmetry of the 
sampled distribution (case 1). In all cases, we used 0.05 as 
the significance level. The critical values for all compared 
tests were obtained from the normal distribution. For the 

simulation study, we adapted an algorithm to R code from 
Corzo and Babativa 2013, described as follows: generate a 
uniform random number u and calculate
           
  

To center the simulated observations calculate the 
median of the GLD as

                              
and then center the data by xi = xi* - θ so that x1, ..., xN has 
zero median.

Case 1
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Figure 1. Density function for case 1 of the GLD

Figure 2.  Density function for case 2 of the GLD
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Figure 3.  Density function for case 3 of the GLD

Figure 4.  Density function for case 4 of the GLD
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To calculate the empirical power of the compared 
tests, 1000 samples of size 30 were selected from each of 
the GLD cases, and we used the following values of the 
winsorization parameter: γ = 0.1, 0.2, 0.4, 0.6, 0.8. The 
alternative hypothesis was simulated for values from θ = 0 
up to θ = 1 for the cases two to five, and up to θ = 1.2 for the 
calibration case one, with steps of size 0.2. The values of p 
were calculated as in Baklizi 2005, from the modified test 
of Corzo and Babativa 2013.

Table 2 contains the empirical powers of the thirteen 
compared tests. In the calibration case 1, it can be noted 
that none of the tests reaches the significance level, excluding 

Case 5
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Figure 5.  Density function for case 5 of the GLD

Figure 6.  Density function for case 6 of the GLD
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BW 2 (0.8), and they reach the maximum power for θ = 1 or 
1.2. Furthermore all BW -test show greater empirical powers 
than the S -test. Moreover, the BW 2 (0.1), and BW 2 (0.2), 
show empirical powers greater than those of the B -test. In 
cases 2 to 6, the twelve compared tests tend to show an 
empirical size slightly greater than the nominal size 0.05.  
However, the empirical sizes of BW 1 (0.4), in case 2, BW 1 

(0.8), in case 3, BW 1 (0.6), in cases 4 and 5 are nearer to 
the nominal size 0.05 than the empirical size of the B -test. 
Furthermore, for case 6, the empirical size of the BW 1-test, 
for any of the five values of γ, are lower or equal to the 
empirical size of the B -test.

Moreover, the empirical sizes of the tests BW 2 (0.1) and  
BW 2 (0.2) in case 2, are slightly lower than that of the B -test, 
but the empirical power of the BW 2-test is greater than the 
empirical power of the B -test, in both cases. In case 3, the 
BW 1 (0.8), shows an empirical size nearer to the nominal 
size than the B -test, and its empirical power is very near to 
that of the B -test. In case 4, the BW 2 (0.8) and BW 1 (0.6) tests 
have considerably lower empirical size than the B -test. In 
case 5, the empirical size of the BW 2-test are lower than the 
empirical size of the B -test; furthermore, the empirical size 
of the BW 1 (0.6) tests is nearer to the nominal size than that 
of the B , although his empirical power is slightly lower than 
that of the B . Finally in case 6, the tests BW 1 (0.4), BW 1 (0.6), 
BW 2 (0.6), and BW 2 (0.8), reach the exact nominal size, 
and their powers are almost equal to the empirical powers 
of the B -test.

It can be noted also that the power decreases with 
increasing of the winsorization parameter. This is due to 
the fact that the more observations are trimmed, the fewer 
information about the parameter of interest there is in the 
test statistic. That means, the object of the winsorization is 
exaggerated at the point that the relevant information about 
the value of theta is lost.

To implement the test in applications we suggest the 
following steps:
• Test the symmetry of the data with the runs test by Corzo 

and Babativa 2013 or some other convenient test for sym-
metry to obtain the value of p for the test statistic in (2.3).

• Calculate the test statistic for the data.
• Perform the test of H0 in (1.1).

Conclusions and Discussion
In all studied cases there is at least one BW -test with empirical 
size nearer the nominal size, with greater empirical power 
than the S test and almost as powerful as the B -test.

In the calibration case, all proposed tests are well 
behaved in terms of their empirical powers and sizes, to 
the point that their empirical powers are greater that of the 
S -test and are very near to the empirical powers of the W
-test. Additionally, the BW 2 (0.1), and  BW 2 (0.2) -tests reach 
better empirical powers than the B -test.

In cases 2 and 3 the empirical power of the test BW 2 

(0.2), overtakes that of the other tests, in cases 4, 5 and 6 
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the empirical power of the test BW 2 (0.1), overtakes that of 
the other tests. We recommend the use of the BW 1 (0.4) and 
BW 1 (0.8), in cases 2 and 3 respectively. For cases 4, 5 and 
6, the suggested tests are the BW 2 (0.6).

To discussion, note that, with exception of the S -test in 
cases 2 and 4 all other compared tests show tendency to be 

Table 2. Empirical Powers and Sizes of the Compared Tests

α =0.05 BW1 (γ)   BW2 (γ)

Sampled 
distribution Ѳ W S B BW1 (0.1) BW1 (0.2) BW1 (0.4) BW1 (0.6) BW1 (0.8)  BW2 (0.1)                             BW2 (0.2) BW2 (0.4) BW2 (0.6) BW2 (0.8)

Case 1

0 0.031 0.044 0.031 0.034 0.034 0.041 0.047 0.046 0.034 0.037 0.041 0.043 0.051

0.2 0.269 0.217 0.251 0.247 0.250 0.249 0.246 0.237 0.257 0.253 0.261 0.259 0.247

0.4 0.667 0.540 0.624 0.623 0.621 0.599 0.576 0.547 0.644 0.637 0.627 0.613 0.570

0.6 0.927 0.833 0.890 0.886 0.884 0.870 0.857 0.843 0.911 0.903 0.884 0.874 0.854

0.8 0.991 0.960 0.980 0.980 0.980 0.974 0.971 0.964 0.990 0.986 0.980 0.977 0.967

1 1 0.997 1 1 1 0.999 0.999 0.997 1 1 1 1 0.997

1.2 1 1 1 1 1 1 1 1 1 1 1 1 1

Case 2

0 0.061 0.060 0.061 0.060 0.056 0.059 0.061 0.059 0.059 0.063 0.061 0.061

0.2 0.324 0.361 0.364 0.370 0.367 0.350 0.339 0.381 0.386 0.394 0.374 0.343

0.4 0.756 0.816 0.807 0.800 0.783 0.773 0.763 0.840 0.841 0.829 0.804 0.773

0.6 0.974 0.983 0.983 0.981 0.984 0.983 0.977 0.991 0.993 0.990 0.984 0.980

0.8 0.994 0.999 0.999 0.997 0.994 0.994 0.994 0.999 0.999 0.999 0.997 0.994

1 1 1 1 1 1 1 1 1 1 1 1 1

Case 3

0 0.050 0.054 0.056 0.054 0.054 0.054 0.051 0.060 0.057 0.059 0.057 0.054

0.2 0.373 0.414 0.411 0.406 0.400 0.383 0.376 0.439 0.429 0.424 0.406 0.379

0.4 0.834 0.857 0.854 0.850 0.846 0.844 0.840 0.877 0.881 0.863 0.847 0.843

0.6 0.993 0.996 0.996 0.996 0.996 0.994 0.993 0.996 0.996 0.996 0.996 0.993

0.8 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Case 4

0 0.059 0.069 0.067 0.067 0.064 0.059 0.060 0.079 0.077 0.071 0.063 0.060

0.2 0.250 0.280 0.273 0.267 0.259 0.256 0.253 0.324 0.304 0.281 0.261 0.256

0.4 0.657 0.709 0.700 0.686 0.671 0.661 0.659 0.746 0.727 0.699 0.680 0.663

0.6 0.943 0.957 0.954 0.951 0.946 0.943 0.943 0.963 0.961 0.954 0.949 0.943

0.8 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Case 5

0 0.051 0.057 0.056 0.054 0.053 0.051 0.053 0.056 0.056 0.054 0.053 0.053

0.2 0.294 0.323 0.313 0.310 0.303 0.300 0.294 0.346 0.337 0.319 0.309 0.299

0.4 0.756 0.777 0.773 0.764 0.761 0.756 0.756 0.801 0.790 0.776 0.764 0.756

0.6 0.977 0.980 0.979 0.979 0.977 0.977 0.977 0.983 0.981 0.981 0.977 .977

0.8 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Case 6

0 0.049 0.051 0.051 0.051 0.050 0.050 0.049 0.061 0.056 0.051 0.050 0.050

0.2 0.279 0.284 0.280 0.280 0.280 0.279 0.279 0.311 0.300 0.280 0.280 0.279

0.4 0.760 0.763 0.761 0.760 0.760 0.760 0.760 0.771 0.766 0.763 0.760 0.760

0.6 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

0.8 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

biased, but this tendency is lower for the BW 1-test. This can 
be due to the functional form of (p), to the used test to select 
the value of p or to possible dependence between γ and p.

A second topic to discuss is for the applications due that 
when we apply the procedure explained in the last comment 
of the Monte Carlo study, we are not able to know if the 
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sampled distribution is one of the five cases of the GLD 
analyzed, and that means that we do not know the empirical 
power of the location test. To know this is necessary to carry 
out a similar study as the here done.
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