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ABSTRACT

We propose a winsorized adaptive rank test for the location alternative for samples from
asymmetric distributions coming from the Generalized Lambda Family. We give analytic
expressions for the exact and asymptotic distributions and for the first two moments of the
test statistic. By means of a Monte Carlo study, we show that for various selections of the
winsorization parameter, our test is more powerful than the sign test, and than the original
test, from which the proposed test is adapted.
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Una prueba de rangos adaptativa winsorizada para localizacion en muestras de
distribuciones asimétricas

RESUMEN

Se propone una prueba de rangos adaptativa winsorizada para la alternativa de local-
izacion en distribuciones asimétricas que provienen de la Familia Lambda Generalizada.
Se encuentran expresiones analiticas para la distribucion exacta y asintdtica, y los dos
primeros momentos de la estadistica de prueba. Por medio de un estudio de Monte Carlo,
se muestra que para varias selecciones de parametros de winsorizacion la prueba pro-
puesta es mas potente que la prueba del signo y que la prueba original de donde fue
adaptada.

Palabras claves: Pruebas de Localizacion, Pruebas de Rangos Winsorizadas, Potencia
de Pruebas de Rangos.
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1 Introduction

Let Xi,...,Xwn, be arandom sample from a continuous distribution F(x—0), such that F(0) =1/2
uniquely. Without loss of generality, consider the test problem:

Hy:0=0 vs. H :0>0,

or versus the alternatives 6 < 0 or 6 # 0. Under such general conditions on F, the sign test is a
locally most powerful test for Hy against H; when the sample distribution is double exponential
(Hettmansperger 1984, page 9-12)) . When the symmetry of F around zero is justifiable, the
Wilcoxon signed rank test is preferred, especially when the sampled distribution is logistic ( Ha-
jek 1999, page 119). Moreover, more efficient tests can be obtained by including information
about the tail weight of the sampled distribution. This class of tests is called winsorized signed
rank tests, and they are preferred instead of the Wilcoxon test, choosing a small winsorization
parameter when the sampled distribution is close to the normal distribution, and a larger win-
sorization parameter when it is closer to the double exponential (Hettmansperger 1984, page
92-93). Baklizi 2005 proposed the use of the Wilcoxon scores modified by an exponent which
depends on the asymmetry level of the sampled distribution to build a test for location under
asymmetry, and showed by means of a simulation study that his test was more powerful than
the sign test, than the Wilcoxon test, than the Lemmer 1987 and Lemmer 1993 tests, and than
a bootstrap procedure test for samples coming from eight cases of the lognormal distribution.

We mix Baklizi’'s modification of the Wilcoxon scores with Tukey’s winsorization technique to
produce a new winsorized adaptive rank test, which becomes more powerful than the Baklizi
test for samples coming from distributions with moderate levels of asymmetry obtained from
the Generalized Lambda Distribution (GLD).

2 The Proposed Test Statistic and some Properties.

Let [X]) <--- < |X|) be the sequence of ordered absolute values of the sample; define R;,
the rank of |Xi|, by |Xi| = [X|,). Let s(X;) be the indicator variables:

1 ifX> 0,
s(Xi) = (2.1)
0 otherwise.

A general scores statistic is defined by (Hettmansperger 1984):

_ 1Y R;
v=N__1¢(N+1>s<xi>,
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where ¢(u), 0 < u < 1, is a nonnegative and nondecreasing function such that 0 < f, ¢(u)du <

o0,

Some known special cases of V are: the sign test (S-Test) statistic with ¢ () = 1, the Wilcoxon
signed rank test (W-test) statistic with ¢ («) = u, the winsorized signed rank test (WW-test)



statistic with ¢ (u) = min{u,1 —y}, 0 < y < 1, where 7y is the proportion of winsorized observa-
tions.

A fourth special case of V is the Baklizi test (B-test) statistic which uses the following condi-
tional (on p) score function, ¢(u) = u”, where p is the p-value of a test for the hypothesis of
symmetry on F, F(x) = 1— F(—x), for all x against asymmetric alternatives, proposed in Ran-
dles, Fligner, Policello and Wolfe 1980, and is an indicator of the asymmetry of F. Note that
when p approaches zero, F shows evidence of asymmetry. Explicitly, the Baklizi test statistic

can be written as follows:
5_ ] i R\’ x)
== S(Xi).
NS \N+1 1

The fifth special case of V is the proposed test (BW-test) statistic, which uses the conditional
(on p) score function:

¢ (1) = min{usP) |1 — y}, (2.2)

where 0 < y < 1 corresponds to the proportion of winsorized observations and g(p) will be
defined in what follows. The proposed test statistics are:

S A 2 \&(P)
BW’:NiZ]mm{(NJil) 71—’}/}S(Xl-),t:1,2, (23)

where BW, will be used for g(p) = p and BW, for g(p) = /p. When a property is common for
the two statistics we will write BW without subscript.

Using Baklizi 2005 notation, let P be the random variable denoting the p-value of the Randles
test for symmetry with probability density function f(p). The proposed BW-test rejects Hy in
favor of H; when BW > k, where k is determined such that P(BW >k | p) = o. The overall size
of the test is o because for a fixed y (Baklizi, 2005):

POV 4= [ PV 2 k| p)y (p)dp = o

The exact conditional distribution of BW under Hy can be obtained by enumeration as follows:
Let Z be a 2" x N matrix containing all posible configurations of ones and zeros assignable to
the sample values according to (2.1), obtained by the cartesian product {0,1}", such that each
row corresponds to a different configuration. The distribution of the vector (S(X;),...,S(Xn)) is
uniform on Z under Hy, because Xi, ..., Xy are independent random variables from a continuous
distribution with median zero. For ¢ (31;) as in (2.2), let

=l o ()

be a vector of scores, and denote by z = (z1,...,zy) a row vector representing a row of Z. The
values of BW can be obtained as function of z by BW(z) = zR, and so the distribution of BW can
be calculated as:

fzeZ:BW(z) <m)

P(BW(z) <m|p)= W

The proposed test statistic has the following properties:



a) ¢(u) =min{us) 1 -y} < 1—1v; therefore,

1 1
/¢(u)du<1—% and O</ O*(u)du < 1.
JO 0

b) From the theory for linear rank statistics, the conditional mean and variance, exact and
asymptotic, of BW for a given p under H, are (Hettmansperger 1984, page 88):

N (1=7) {1 - 2(p) ‘} .

(Details in Appendix A.1.)

c) It also holds that

converges to a standard normal distribution.

3 Monte Carlo Study

To study the empirical power of the proposed test, we selected four cases of the GLD with
a moderate level of asymmetry, and to calibrate the size of the compared tests we selected
the normal distribution approximated by the GLD. The parameters of these distributions are
showed in Table [f]and the corresponding densities in Figures ] [2] [3] [4} [5] and [6|

We have compared the S-test, the B-test, the BW;-test and BW--test, and we have included
the W-test to calibrate the compared tests under the assumption of symmetry of the sampled
distribution (case 1). In all cases, we used 0.05 as the significance level. The critical values
for all compared tests were obtained from the normal distribution. For the simulation study, we
adapted an algorithm to R code from Corzo and Babativa 2013, described as follows: generate
a uniform random number « and calculate

K=+ (ufﬁ (1 —ui)M) [ho, i=1,....n.



To center the simulated observations calculate, the median of the GLD as

0.5% — (.5
=AM +—
A2

and then center the data by x; = x; — 6 so that xy,...,x, has zero median.

To calculate the empirical power of the compared tests, 1000 samples of size 30 were selected
from each of the GLD cases, and we used the following values of the winsorization parameter:
y= 0.1, 0.2, 0.4, 0.6, 0.8. The alternative hypothesis was simulated for values from 6 =0 up
to 6 = 1 for the cases two to five, and up to 6 =1.2 for the calibration case one, with steps of
size 0.2. The values of p were calculated as in Baklizi 2005, from the modified test of Corzo
and Babativa 2013.

Table [2] contains the empirical powers of the thirteen compared tests. In the calibration case 1,
all tests tend to be conservative, excluding BW,(0.8), and they reach the maximum power for
0 =1 or 1.2. Furthermore all BW-tests show greater empirical powers than the S-test. More-
over, the BW,(0.1) and BW,(0.2) show empirical powers greater than those of the B-test.

In cases 2 to 6, the twelve compared tests tend to show an empirical size slightly greater than
the nominal size 0.05. However, the empirical sizes of BW(0.4) in case 2, BW(0.8) in case
3, and BW(0.6) in cases 4 and 5 are nearer to the nominal size 0.05 than the empirical size
of the B-test. Furthermore, for case 6, the empirical size of the BW-tests, for any of the five
values of v, are lower or equal to the empirical size of the B-test.

Moreover, the empirical sizes of the tests BW,(0.1) and BW,(0.2) in case 2, are slightly lower
than that of the B-test, but the empirical power of the BW,-test is greater than the empirical
power of the B-test in both cases. In case 3, the BW,(0.8)-test shows an empirical size nearer
to the nominal size than the B-test and its empirical power is very near to that of the B-test.
In case 4, the BW,(0.8) and BW(0.6) tests have considerably lower empirical size than the
B-test. In case 5, the empirical size of the BW,-tests are lower than the empirical size of the
B-test; furthermore, the empirical size of the BW(0.6)-test is nearer to the nominal size than
that of the B, although his empirical power is slightly lower than that of the B. Finally in case 6,
the tests BW(0.4), BW(0.6), BW,(0.6) and BW,(0.8) reach the exact nominal size, and their
powers are almost equal to the empirical powers of the B-test.

4 Conclusions and Discussion

In all studied cases there is at least one BW-test with empirical size nearer the nominal size,
with greater empirical power than the S test and almost as powerful as the B test.

In the calibration case, all proposed tests are well behaved in terms of their empirical powers
and sizes, to the point that their empirical powers are greater that of the S-test and are very



near to the empirical powers of the W-test. Additionally, the BW,(0.1) and BW,(0.2)-tests reach
better empirical powers than the B-test.

We recommend the use of the BW;(0.4) and BW;(0.8)-tests in cases 2 and 3 respectively. For
cases 4, 5 and 6, the suggested tests are the BW,(0.6).

To discussion, note that, with exception of the S test in cases 2 and 4 all other compared
tests show tendency to be biased, but this tendency is lower for the BW,-tests. This can be
due to the the functional form of g(p), to the used test to select the value of p or to possible
dependence between y and p.
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A Proofs.

A.1 Conditional Mean and Variance of the Proposed Test Statistic under H,.

Proof. Valid for g(p) = p or g(p) = /-

E712 _ 1y R; \&(P)
E[BW|p]|=E Nme{(m) ,l—y}s(Xl-) »
i=1
_! y min{( R, )g(p) I—Y}E[S(X-)}
N 4 N+1 ’ !

2 Jo
_ (=7 [ sp) _},)ggp)]’
2 g(p)+1
1Y (r)
NVar[BW|p]=NVar [N me{<N111)g g ,1 —}/}S(X,) p
i=1
N S\ 8(p)
= szimllﬁ{([v’il) 7l—y}Var[s(X,)]
1y, {( R )8(17) } 1
= — ) min L =7 —
4 ; N+1 N
oo 1 /!
N Z/ min?{u8?) 1 — v} du
a2
_ (=9 [ _28(p) (1= )it
4 2¢(p)+1
B Tables.
Table 1: Cases of the GLD
A A A3 A4 [074) oy
Case 1 0 0.197454  0.134915 0.134915 0 3
Case2 -0.116734 -0.351663 -0.13 -0.16 08 114
Case 3 0 -1 -0.1 -0.18 20 21.2
Case4  3.586508 0.04306 0.025213 0.094029 09 4.2
Case 5 0 -1 -0.0075 -0.03 15 75

Case 6 0 1 0.00007 0.1 1.5 58
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C Figures.

Figure 1:

Figure 2:

Figure 3:
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Density function for case 3 of the GLD
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Figure 4: Density function for case 4 of the GLD
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Figure 5: Density function for case 5 of the GLD
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Figure 6: Density function for case 6 of the GLD
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